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Abstract. Isogeny-based cryptography has emerged as a promising post-
quantum alternative, with CSIDH and its constant-time variants CTIDH
and dCTIDH offering efficient group-action protocols. However, CTIDH
and dCTIDH rely on dummy operations in differential addition chains
(DACs) and Matryoshka, which can be exploitable by fault-injection
attacks. In this work, we present the first dummy-free implementation
of dCTIDH. Our approach combines two recent ideas: DACSHUND, which
enforces equal-length DACs within each batch without padding, and
a reformulated Matryoshka structure that removes dummy multiplica-
tions and validates all intermediate points. Our analysis shows that small
primes such as 3,5, and 7 severely restrict feasible DACsHUND configura-
tions, motivating new parameter sets that exclude them. We implement
dummy-free dCTIDH-2048-194 and dCTIDH-2048-205, achieving group
action costs of roughly 357,000-362,000 Fj,-multiplications, with median
evaluation times of 1.59-1.60 (Gcyc). These results do not surpass dC-
TIDH, but they outperform CTIDH by roughly 5% while eliminating
dummy operations entirely. Compared to dCSIDH, our construction is
more than 4x faster. To the best of our knowledge, this is the first ef-
ficient implementation of a CSIDH-like protocol that is simultaneously
deterministic, constant-time, and fully dummy-free.
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1 Introduction

In recent years, isogeny-based cryptography has attracted significant attention
from both mathematicians and cryptographers, due to its features such as non-
interactive key exchange and compact key sizes. Following the cryptanalysis
of SIKE [7,12,16], research on isogeny-based key exchange has shifted toward
CSIDH [8], which currently remains unbroken. The attacks that compromised
SIKE-based on the supersingular isogeny framework—do not apply to CSIDH
or its variants, thereby preserving their relevance as viable post-quantum key
exchange candidates.

Despite its resilience, CSIDH is relatively slow compared to other post-quantum
schemes. Furthermore, achieving secure implementations requires countermea-
sures against side-channel attacks, which further increase computational over-
head. To address these limitations, variants such as CTIDH [1] and dCTIDH [5]
have been proposed. These schemes improve performance by introducing more
structured sets of isogeny paths and leveraging fixed parameter sets that sim-
plify implementations. Both employ isogeny batching techniques, which simulta-
neously enhance security and performance. CTIDH achieves faster key exchange
by introducing a new key space based on batches of isogenies, together with a
constant-time algorithm for the CSIDH group action that synergizes with the new
structure. Building on CTIDH, dCTIDH adopts a more deterministic approach,
refining the batching technique through the introduction of Widely Overlapping
Meta-Batches (WOMBats).

Beyond performance, dummy operations introduce an attack surface for ac-
tive side-channels (fault injection): by targeting these redundant steps, an ad-
versary can induce faults that desynchronize the control flow and leak secrets.
This risk is not merely theoretical: Campos, Kannwischer, Meyer, Onuki, and
Stottinger [6] demonstrated fault attacks against dummy-padded isogeny compu-
tations, and more recently [11] exploited dummies in implementations of CSIDH
which are constant-time. While batching in CTIDH raises the bar, their results
indicate that practical fault attacks remain feasible, which motivates pur-
suing dummy-free techniques.

Contributions. In this work, we investigate in depth the use of DACsHUND and
dummy-free Matryoshka isogenies, and their combined role in enabling a fully
dummy-free dCTIDH implementation. Our primary goal is to produce an opti-
mized variant of CTIDH/dCTIDH that eliminates dummy operations while main-
taining strong security properties.

1. We analyze the DACsHUND method for dummy-free DAC computations. For
each prime, we enumerate all possible DAC configurations and adapt the dC-
TIDH greedy parameter search to enforce equal-length DACsHUNDs within
each batch, thus avoiding dummy operations. We evaluate the resulting con-
figurations under different dCTIDH settings and quantify the performance
impact.
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2. We implement the dummy-free Matryoshka isogeny approach and integrate
its cost into the greedy search process, enabling parameter optimization that
accounts for its specific constraints.

3. We propose new dCTIDH parameter sets that leverage these dummy-free
techniques for improved performance. We focus on configurations that ex-
clude the primes 3,5, 7, as they are less compatible with DACsHUND.

Availability of software. Our implementation and greedy search scripts are avail-
able at

https://github.com/AndHell/hardenedCTIDH.

Related Work. Several works have sought to make CSIDH constant-time or de-
terministic. For instance, in [13], the authors address challenges such as point
sampling and introduce the SIMBA technique. However, their approach still re-
lies on dummy operations to compute isogenies. In parallel, other research has
explored dummy-free constant-time methods, including two-point ladders and
strategy-based scheduling of small-prime isogenies [14]. While these methods
help mitigate timing leakage, they do not fully resolve batch-level DAC harmo-
nization or eliminate the dummy padding inherent in Matryoshka. In CTIDH [1],
the authors apply batching of isogenies using atomic blocks and Matryoshka to
achieve a faster constant-time implementation of CSIDH. However, this approach
is neither deterministic nor dummy-free.

Campos, Hellenbrand, Meyer, and Reijnders introduced dCTIDH [5], a de-
terministic variant of CTIDH. Their central innovation is the use of WOMBats,
which combine overlapping batches with multiple isogenies per batch to enable
efficient deterministic evaluation. Their implementation is highly optimized, both
in terms of the number of finite-field operations per prime and the efficiency of
those operations. Nevertheless, as the authors emphasize, dCTIDH still relies on
dummy operations in both Matryoshka isogenies and DAC padding. As a re-
sult, it is not dummy-free, leaving open the challenge of combining determinism,
constant-time execution, and full dummy-freeness in a single construction. To
address this, dCTIDH proposed two potential directions: DACsHUND and dummy-
free Matryoshka isogenies. In this work, we investigate these approaches in detail,
with the goal of achieving the first fully dummy-free variant of dCTIDH.

Recent work has explored radical 3-isogenies as a replacement for small-
degree isogenies in CSIDH-like protocols, reporting up to a 4x speedup for dC-
TIDH [9]. However, initiating a 3-isogeny chain still requires repeated sampling,
which introduces probabilistic behavior. As a result, radical 3-isogeny chains
cannot be made dummy-free and remain too costly in practice compared to
2-isogeny walks.

Addressing a related challenge in isogeny computation, Bernstein, Cottaar,
and Lange [2] revisit the problem of constructing differential addition chains,
introducing new algorithms that minimize both chain length and computational
overhead. Their work focuses on faster methods for finding minimum-length
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continued-fraction differential addition chains, significantly improving over pre-
vious search strategies. In our setting, we also rely on efficient DACs and em-
ploy a greedy search procedure to identify chains that satisfy the structural
constraints imposed by DACsHUND. While their algorithms target global op-
timality in chain length, our approach prioritizes compatibility with batching
and constant-time requirements, aiming at practical dummy-free instantiations

within the dCTIDH framework.

2 Background

2.1 Elliptic Curves and Isogenies

Given a finite field F,,, an elliptic curve E over F, is defined by the equation

y? =23+ ax +0b,

where a,b € F,, and 4a® + 27b% # 0 to ensure the curve is nonsingular. Elliptic
curves can also be expressed in alternative forms. For instance, Montgomery
curves constitute a special class of elliptic curves defined over IF,, by

By? = 2® + A2? + z,

where A, B € F,, and B(A? — 4) # 0 guarantees nonsingularity. The group law
on E(F,) uses the point at infinity O as the identity element. For a detailed
treatment of elliptic curve theory and arithmetic, see [17].

Projective Coordinates. In practice, elliptic-curve arithmetic is often performed
in projective coordinates to avoid costly field inversions. An affine point (x,y) is
represented as (X : Y : Z), corresponding to (X/Z, Y/Z) when Z # 0, while the
point at infinity O is given by (0 : 1 : 0). This representation replaces inversions
with a few additional multiplications, making additions, doublings, and isogeny
evaluations both more efficient and easier to implement in constant time.

Isogenies. An isogeny between elliptic curves, ¢ : E — E’, is a non-constant
algebraic map that preserves the group law. Every isogeny is uniquely determined
by its kernel, which is a finite subgroup of E. When working with Montgomery
curves, these maps can be efficiently evaluated using only the x-coordinates of
points, yielding major computational advantages for large-degree isogeny walks
as required in CSIDH [8] and related protocols.

The use of z-only arithmetic not only simplifies the application of Vélu’s
formulas—the classical tool for computing an isogeny from its kernel—but also
enables constant-time implementations via techniques such as the Montgomery
ladder. For small odd prime degrees ¢, the kernel is usually generated by an F,-
rational point of order ¢, which allows efficient construction of the corresponding
quotient curve.
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The two main algorithms for evaluating such isogenies are Vélu’s formu-
las [18] and +/élu method [3]. Both reduce the problem to computing a polyno-

mial of the form
hs(X) = [T (X —a([s]P)), (1)
ses
where P is a point of order ¢, and S is an index set determined by ¢. The main
computational tasks are to determine the new Montgomery coefficient A’ of the
image curve E’ and to evaluate the images of selected points under ¢.

In the classical Vélu approach, the index set is S = {1,2,...,(¢ — 1)/2};
one computes z([s]P) for all s € S and forms the product hg(X). This yields
essentially linear cost in ¢: about 4¢ F,-multiplications to update A’ and 2¢
per evaluated image point, i.e., overall 6([); Vélu is conceptually simple and
practically optimal for small prime degrees.

For larger £, the \/élu* algorithm applies a baby-step/giant-step decompo-
sition on the odd-index set S = {1,3,5,...,0 — 2} via S + (U x V)UW,
obtaining hg as hy times a resultant involving hy and a polynomial derived
from hy. This reorganizes the arithmetic to O(v/¢). Vélu is a special case of
Véluwith U =V = @.

Remark 1. We note that both CTIDH and dCTIDH rely on Matryoshka “isoge-
nies,” a technique to enforce uniform evaluation costs across batches of primes.
Because this construction is central to CTIDH, dCTIDH, and also to our work,
we provide a more detailed discussion in §2.6.

2.2 CSIDH

Introduced by [8] in 2018, CSIDH is a non-interactive key exchange protocol
based on the action of the ideal class group of an imaginary quadratic order on
a set of supersingular elliptic curves defined over a prime field F,,. This class
group action is realized through chains of isogenies between elliptic curves, each
of small odd prime degree ¢; dividing p + 1.

The protocol operates on a restricted set £ of supersingular elliptic curves
E/F, whose endomorphism ring is isomorphic to Z[\/—p], with all curves having
exactly p + 1 points. For a prime p of the form

n
p+1=2"-g-T] 4,

i=1
where f > 2, g a small cofactor, and the ¢; are small, distinct odd primes,
the group structure of £(F,) admits a torsion decomposition enabling efficient
computation of ¢;-degree isogenies.

The underlying group action is defined as follows: a secret key is a vector

(e1,...,en) with e; € [-m;, m;], representing the ideal class

n
_ €;
a= Hﬁz
i=1

4 Pronounced “square-root Vélu”.
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Its action on a fixed base curve Ej is computed as a walk in the ¢;-isogeny
graph, with each step corresponding to an ¢;-isogeny in the forward or backward
direction according to the sign of e;. The resulting curve E' = ax* Fy is the public
key.

CSIDH is commutative: for secret keys a and b,

ax(bxEy) =bx*(axEp),

allowing both parties to derive the same shared secret curve without interaction.

Security relies on the isogeny path-finding problem: given two supersingular
curves E and E’ over [, with the same Fp-rational endomorphism ring O, find
an explicit F,-rational isogeny ¢ : E — E’ of smooth degree. This problem is
believed to be hard for both classical and quantum algorithms when instantiated
with sufficiently large p and appropriate parameters. Quantum security analysis
remains active, with recent work suggesting that primes of at least 2048 bits
may be required for conservative approaches.

2.3 Constant-Time Isogeny Diffie-Hellman (CTIDH)

The CTIDH [1] variant removes timing side channels by ensuring that all isogeny
walks execute in constant time. Instead of conditionally applying an ¢;-isogeny
based on the exponent e;, CTIDH introduces a batching strategy with a rede-
fined key space. A batch is defined as B; = {;1,...,%; n,}, where all primes
in B; are handled collectively. An /; ;-isogeny is then computed as an ¢; n,-
isogeny through Matryoshka isogenies, which conceal the degree of each isogeny
by padding smaller ones with dummy computations so that every evaluation
matches the cost of an ¢; y,-isogeny for each batch B;.

To further mitigate leakage, CTIDH assigns a bound m; to each batch, pre-
scribing a fixed number of isogeny evaluations. When the required number of
evaluations is smaller than m;, dummy isogenies are inserted so that every batch
always performs exactly m; evaluations. This masks timing variations across
batches. However, it does not protect against fault attacks, since the dummy
operations themselves remain a potential target.

The dominant cost of an isogeny evaluation lies in computing its kernel poly-
nomial, which involves scalar multiplications by different prime factors and would
otherwise lead to timing variations. To mitigate this, CTIDH employs differential
addition chains (DACs). By padding shorter chains with dummy operations, all
scalar multiplications are forced to cost the same, analogous to the Matryoshka
approach used for isogeny evaluations.

Finally, performance improvements arise from assigning bounds m; to entire
batches rather than to individual primes. This yields a larger combinatorial key
space:

B min{z,y}

X X

i = [[o0um). o= > (7)(1)
i=1 k=0

where @(z,y) counts integer vectors in Z* with ¢1-norm at most y.
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2.4 dCSIDH: Deterministic and Dummy-Free CSIDH

The dCSIDH, or secsidh, variant [4] was introduced as a high-security implemen-
tation of CSIDH that simultaneously achieves determinism and dummy-freeness.
Unlike CTIDH, which relies on dummy operations to enforce constant-time be-
havior, dCSIDH eliminates both randomness and dummy padding by restricting
the key space to exponents e; € {—1,1}. This restriction ensures that every
isogeny degree is used exactly once in a fixed direction, providing determinism
in both point sampling and isogeny evaluation.

From a security perspective, determinism provides a stronger defense against
fault attacks. However, from a performance standpoint, this comes at a signif-
icant cost: eliminating dummies removes batching flexibility, and determinism
requires larger parameter sizes (typically starting at 2048-bit primes) to main-
tain security. As a result, benchmarks show that dCSIDH runs approximately 3
to 5 times slower than probabilistic CTIDH at equivalent parameter sizes.

2.5 dCTIDH: Deterministic CTIDH

While CSIDH offers an elegant algebraic structure and promising post-quantum
security, its reference design is vulnerable to practical implementation issues
most notably timing and fault attacks. To address these challenges, dCTIDH [5]
was introduced as a refinement of CTIDH, enhancing the original protocol with
deterministic evaluation, stronger side-channel resistance, and improved perfor-
mance.

The dCTIDH scheme is a deterministic variant of CTIDH that resolves the
reliance on probabilistic point sampling and non-deterministic isogeny evalua-
tion. Its key innovation is the introduction of Widely Overlapping Meta-Batches
(WOMBAats), which combine two complementary batching ideas: multiple isoge-
nies per batch and overlapping batches.

In the original CTIDH, exactly one isogeny is computed per batch in or-
der to avoid secret-dependent behavior. This constraint limits efficiency, since
even if the secret key requires several isogenies from the same batch, only one
can be evaluated. In contrast, if we restrict secret exponents to unitary values
e; € {—1,1}, then multiple isogenies of distinct degrees can be computed safely
within a single batch. For a batch B; = {{;1,...,4;n,}, we can choose any
number M; < N; of distinct degrees, evaluating M; isogenies via M; calls to
Matryoshkal[¢; 1, £; v,]-

This significantly reduces the number of total isogenies needed, as the key
space grows combinatorially:

N Mi
@(N;, M;) = <M> 2ME or Wgummy (N3, Mi) = (J) .97
K3 _]:O
if dummy isogenies are allowed (i.e. e; € {—1,0,1}).
Another approach to enlarge the key space and improve efficiency is to use
batches that overlap in some of their prime factors. Suppose the first batch is
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By = {{1,...,4n,}. Instead of defining By = {{n,+1,.--,€N,+N,}, We let the
batches share wq 2 primes:

82 = {€N1*w1,2+17 o 7€N1+N2*w1,2}'

This overlapping structure amplifies the combinatorial growth of the key space
without requiring a proportional increase in the number of isogeny evaluations.
To ensure determinism, the bounds M7, My must satisfy M; + My < N1+ Ny —
w1 2, preventing multiple isogenies from being applied to the same degree.

dCTIDH combines the two techniques above into WOMBats. A WOMBat
W ={l;1,...,4; n} with bound M is evaluated as M overlapping batches

By ={li,....In—m+1}, Bo={lo,... . ¢n_mry2}, .. By ={lm,... . (N}

Each B; overlaps in N — M primes with its neighbors, and exactly one isogeny is
computed from each, realized as a Matryoshka isogeny Matryoshkal[l;, {nx—nr4;].
In this way, the WOMBat structure deterministically covers all possible distribu-
tions of M distinct isogeny degrees, while guaranteeing constant computational
cost. The resulting key space of Nyy disjoint WOMBats is

IﬁVW(Ni,Mi) = ]ﬁv (]\]\;) oM,

i=1 i=1

To mitigate timing leakage, dCTIDH employs DACs, which pad shorter chains
with dummy steps within each WOMBat to achieve constant-time scalar multi-
plication as previous mentioned. Consequently, even though dCTIDH eliminates
randomness during evaluation, the DAC and Matryoshka computations still in-
corporate dummy steps to maintain constant-time execution.

2.6 Techniques in CSIDH-like Schemes

Efficient implementations of CSIDH and its variants rely on specialized tech-
niques that simultaneously ensure constant-time execution and improve the per-
formance of scalar multiplications and isogeny evaluations. Among the most
important are Differential Addition Chains (DACs), which realize scalar multi-
plications in constant time using only z-coordinates, and Matryoshka isogenies,
which enable constant-time evaluation of isogenies while reducing computational
cost through the exploitation of nested structures within isogeny chains.

Differential Addition Chains (DACs). Differential Addition Chains (DACs) are
algorithmic frameworks for scalar multiplication on elliptic curves, particularly
in the Montgomery model, where only z-coordinates are used. By avoiding full
group operations and secret-dependent branching, DACs enable constant-time
and side-channel-resistant implementations—an essential feature in isogeny-based
cryptography where points are ephemeral and curves evolve along isogeny walks.
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Definition 1 (Differential Addition Chain). A4 differential addition chain
for an integer n is a sequence 1 = cg, c1, ..., ¢, = n such that for each i €
{1,...,r} there exist indices j,k < i with

¢ =c¢j+cg,and ¢j —cp €{0,co,c1,...,¢-1}

In other words, each new sum in the chain must correspond to a difference
already present in the chain (or zero).

Ezxample 1. A differential addition chain for 29 is 1, 2, 3, 5, 8, 13, 21, 29, since,
for instance, 13 = 8 + 5 with difference 8 — 5 =3 € {1,2,3,5,8}.

In this work we focus on the subclass of continued-fraction DACs, which
admit a compact bitstring encoding. For simplicity, we use the terms DAC and
continued-fraction DAC interchangeably throughout.

Definition 2 (Continued-fraction DAC). Let (as,bo,c3), ..., (ar, by, c) be
a sequence of triples with n > 3, (ag,b2,c2) = (1,2,3), ¢, = n, and for each
(bi—1,¢im1,¢im1 +bi—1), if fi =0,
(aiybisci) = ,
(ai—1,cic1,¢ic1 +ai—1), if fi =1,

with ¢; = a;+b;. Then the continued-fraction DAC is the sequence 1, 2, ca, ..., ¢,
n.

Ezxample 2. A continued-fraction DAC for 13 admits the compressed bitstring
f = 11110.

In the Montgomery model, scalar multiplication [k]P can be realized by it-
erating only differential operations:

DIFF ADD(P,Q,P — Q) and =xDBL(P),

while tracking the differential P—@). This makes the procedure fully deterministic
and constant-time. Algorithm 1 illustrates how scalar multiplication by n can
be carried out using a compressed DAC bitstring, relying solely on the two
fundamental operations xDBL and DIFF_ ADD.

Note that two DACs corresponding to different integers incur the same com-
putational cost whenever their compressed representations have the same length,
regardless of the integers themselves.

Remark 2. Compared to the classic Montgomery ladder (which is also constant-
time), continued-fraction DACs compress structured additions/doublings for
fixed small ¢ and integrate more naturally with batch scheduling, which is why
CTIDH/dCTIDH prefer DACs for kernel generation.

In CSIDH-like protocols, DACs are used to compute kernel generators for
isogenies. Secret keys are exponent vectors (ey,...,e,) indicating how many
times an isogeny of a specific degree is applied. Each scalar multiplication [¢;]P;
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Algorithm 1: DAC — Scalar multiplication via a compressed DAC

Input: Point P, compressed DAC fs,..., fr forn
Output: [n]P
: Xo Y
X1 < xDBL(P)
X, < DIFF_ADD(P, P, X1)
for i =3 to r do
if fz =0 then
(Xo, X1, X2) — ()(17 Xo, DIFFiADD(Xo, X1, XQ))
else
(X(], )(17 Xz) < (Xo, XQ, DIFF_ADD(Xl, X(], XQ))
end if
: end for
: return X

—_

_

[

(for small primes ¢;) is performed using a fixed DAC, ensuring constant-time
execution.

In CTIDH and dCTIDH, DACs are precomputed according to the allowed ex-
ponent bounds, and scalar multiplications are often batched to reuse intermediate
results. However, the length of these DACs—and therefore the computational
cost of a multiplication by ¢;—depends directly on ¢;. To keep the isogeny degree
l; secret, CTIDH enforces constant-time multiplications for all factors within a
batch B. This is done by precomputing an optimal DAC for each ¢; € B and
padding it with dummy steps if necessary, so that multiplication by any cofactor
from B requires the same number of operations as the largest ¢; in the batch.

However, since dummy padding is normally applied to maintain constant-
time execution, it can leave room for active attacks, such as fault injection. The
dCTIDH scheme addresses this issue with DACsHUND, a technique for dummy-free
DAC evaluation, which we explore later in this work.

Matryoshka isogenies. As previously mentioned, the computational cost of evalu-
ating isogenies via Vélu’s formulas or \/élu grows respectively as O(¢) and O(v/¢)
in the isogeny degree . Since in CSIDH-like protocols one must evaluate isogenies
of different prime degrees, these costs naturally vary across primes, potentially
leaking information and complicating optimization. Additionally, when primes
are grouped in batches, such as in CTIDH and dCTIDH, isogeny evaluations must
also cost the same within each batch. To address this, CTIDH introduces the no-
tion of Matryoshka isogenies, a technique that enforces uniform evaluation cost
across a batch of primes.
The core idea is to impose a “nested” evaluation structure on the kernel
polynomial
hs(X) =[] (X —2([s1P)), 2)
ses
where S = {1,2,...,(¢ — 1)/2} in the Vélu case, or S = {1,3,5,...,¢ — 2} in
the /élu case. For Vélu’s method, this amounts to cycling through the multiples
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[s] P, generating and evaluating hg(X) on the fly. Once the loop reaches (¢—1)/2,
one can continue appending dummy iterations, thereby aligning the total number
of operations to that required by the largest prime fpax in the batch. In this
way, any (-isogeny in the batch can be evaluated at the uniform cost O(fmax)-

The same concept extends to /élu evaluations. In this case, the index set
S +— (UxV)UW is split into a box U x V and a leftover set W. Then,
hs(X) can be computed by multiplying Ay (X) with the resultant of hy (X) and
a polynomial derived from V', with all sets U, V', and W having size 5(\/@)

To apply a Matryoshka structure, U and V are chosen according to the
smallest degree in the batch, while W is padded according to the largest. This
ensures a uniform evaluation cost across primes in the batch, albeit with some
efficiency loss since the parameters U, V, W are no longer optimally tuned for
each /.

We denote by Matryoshka[¢;, ¢;] a computation that performs any isogeny of
degree £ € [¢;,¢;] at the cost of ¢;, whether using Vélu or /élu as appropriate.
This nested framework makes it possible to batch isogeny evaluations without
leaking degree information, while still achieving sublinear performance when
V/élu is applicable. For further details, see [1,3].

3 DACsHUND

In dCTIDH, key generation requires computing a sequence of scalar multiplica-
tions [¢;] P for a fixed set of primes ¢1,...,£,. These multiplications are carried
out on Montgomery curves using z-only arithmetic (xADD, xDBL) and differen-
tial addition chains (DACs). Implementations must be side-channel resistant,
deterministic, and ideally batched to maximize performance.

In constant-time settings, the minimal DAC for each prime generally has a
different length. To equalize the execution flow, previous approaches required
padding shorter DACs with dummy operations so that all scalar multiplications
within a batch completed in the same number of steps. While effective, this intro-
duces redundancy and increases susceptibility to certain advanced fault-injection
attacks. To overcome this limitation, we introduce DACsHUND (Differential Ad-
dition Chain Having Unnecessities Needed for Dummy-freeness), originally pro-
posed in the future work of the dCTIDH paper, which enables dummy-free DAC
execution.

Definition 3 (DACsHUND). Let {B1,...,B,} be a family of n batches, where each
batch B, consists of N; primes: B; = {{14,...,0n, i} with 1, < --- </{n, ;. Each
prime £; ; has an associated set D;; of admissible DAC' lengths. The configuration
{Bi,...,B.} is a valid DACSHUND if, for every batch B;, the intersection ﬂi\il D,
18 mon-empty.

Intuitively, the idea is to partition the primes into batches such that all DACs
in a batch share at least one common length. This eliminates the need for dummy
padding while preserving constant-time execution. Algorithm 2 formalizes the
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batch validation procedure. This general framework not only supports dCTIDH,
but can also be applied to related protocols such as CTIDH.

Ezample 3. Consider a batch By = {11,13,17,19}. The corresponding DAC sets

are:
Dl,l = {3; 4a 8},

Dy, = {3,4,5,10},
D31 ={4,5,7,14},
Dy1 ={4,5,6,8,16}.
Since their intersection is {4}, this is a valid DACsHUND configuration. However, if

prime 5 is added, its DAC set {1, 2} leads to an empty intersection, invalidating
the batch.

Algorithm 2: IsValidDACsHUND — Validation of DACSsHUND Compatibility

Input: Batch sizes N = (N1,..., Np), number of batches B, prime list P
Output: True if valid; False otherwise
: Partition P into batches PY, ... PPB) of sizes Ni,...,Np
: fori=1to B do

I (), ep(:) DACSHUND[p]

if I = then

return False

end if
end for
return True

PP W

DACsHUND Map. The first step in building a DACsHUND configuration is to enu-
merate all admissible DACs for each prime in the range of interest. Instead of
storing only the shortest DAC, we record every possible DAC length and its cor-
responding representation. This yields a map DACsHUND associating each prime
p with its set of DAC lengths. For example, DACSHUND[13] = {3,4, 5, 10}.

We adopt a straightforward brute-force strategy: enumerating all possible
compressed DAC representations up to a prescribed length (e.g., 16), and testing
each candidate to verify whether it corresponds to a valid prime. Although this
approach does not exploit optimized DAC search methods [2], the search space
remains sufficiently small that an exhaustive traversal can be completed in a
small time frame.

3.1 Searching Batch Configurations

With DACsHUND in place, the next step is to search for valid batch configura-
tions. The dCTIDH batch search builds on the greedy strategy of CTIDH and
is defined by three parameters: the number of batches B, the batch size vector
N = (Ny,...,Np) specifying the number of primes per batch, and the bound
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vector M = (M, ..., Mp) that ensures the resulting configuration spans a suf-
ficiently large key space.

Initialization. The standard dCTIDH greedy initialization assigns equal size
to all batches (N; = n/B with >_ N; = n), but this often produces invalid
DACsHUND configurations with empty intersections. To address this, we construct
an initial configuration iteratively: starting with N = (1, ..., 1), we cycle through
the batches, incrementing one INV; at a time, and accept the update only if the
resulting configuration is DACsHUND-valid. This continues until all primes are
allocated. The procedure is shown in Algorithm 3.

Algorithm 3: FindInitialBatchSizes — Search for Valid Initial Configura-
tions

Input: Number of batches B, prime list P
Output: Batch size tuple N if valid; None otherwise

1: Initialize N « (1,...,1) € Z®

2: while Y7 N; < |P| do

3 A < False

4 for i =1 to B do

5: Let N’ < N with N/ + N; +1
6 if ISVALIDDACSHUND(N', B, P) then
7 N+ N', A < True

8: end if

9: end for
10: if A = False then
11: return None
12: end if
13: end while
14: return N

Greedy search. The greedy algorithm modifies a configuration by decreasing the
size N; of one batch B; and increasing the size of another B; # B;. This is re-
peated while exploring feasible bounds M; for each batch. To integrate DACSHUND,
we introduce a validation step at each modification to ensure that the new batch
configuration preserves non-empty DAC intersections. If multiple DAC lengths
are available, the smallest one is selected to minimize scalar multiplication cost.
The cost function is thus adapted to consider the shortest valid DAC from the
intersection of each batch.

Remark 3. Small primes such as 3, 5, and 7 have very restricted DAC sizes (e.g.,
D3 = {0}). Their inclusion can yield inefficient configurations under DACsHUND
constraints. For this reason, we also explore configurations excluding these primes
and substituting them with larger ones to assess the performance trade-offs.
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4 Dummy-Free Matryoshka

As outlined in §2.6, both CTIDH and dCTIDH employ the Matryoshka structure
to conceal the true degree of an isogeny within a batch. In this setting, an isogeny
of degree ¢} contained in a batch (¢, ¢,.) is evaluated at the uniform cost of an
£,-isogeny. The classical construction proceeds as follows. One first computes the
sequence of points

P2P,..., {fgl}P,

and from these builds the kernel polynomial. The polynomial is factored into
two parts: the real factors,

(ex—1)/2

H (z — z([]]P)),

i=0
which correspond to the actual /;-isogeny, and the dummy factors,

(er=1)/2

I[I G@-«pr),

i=(0r—1)/241

which pad the cost up to ¢, and thereby hide the true degree ¢j.

This dummy-based approach introduces two distinct entry points for fault-
injection attacks. First, the dummy multiplications in the kernel polynomial may
be distinguishable from real ones, enabling targeted faults. Second, the unused
multiples

lp—1 l—1

although computed, are never required by the true kernel and thus create addi-
tional leakage channels.

To address these vulnerabilities, [5] introduced a modified Matryoshka struc-
ture. Their refinement eliminates dummy multiplications by reformulating the
kernel product so that redundant terms cancel out algebraically, rather than
being introduced explicitly. Furthermore, the unused multiples are validated
against their expected relations, preventing an adversary from exploiting them
as a source of leakage. This restructuring preserves the constant-time nature of
Matryoshka while significantly reducing its exposure to fault attacks.

4.1 Matryoshka 2.0

The idea described in [5, Appendix A], eliminates dummy operations entirely
while retaining the same cost profile. The key observation is that for any point
P, we have z([i]P) = x([¢ — i]P). This symmetry allows the algorithm to verify
that every multiple’s x-coordinate must be computed correctly, since each will
appear twice.

Algorithm 4 shows the full computation of the kernel polynomial h using
the dummy-free Matryoshka approach, as described in [5]. Instead of inserting
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dummy factors, Matryoshka 2.0 replaces them with real multiplications of a
modified form:

v = 52([i|P) — o~ 3a([i]P),
where « is chosen in constant time to be —1 if the value z([¢{]P) has already
appeared for some j < i, and 1 otherwise. Thus, lines 12 to 14 carry the same
information as checking whether i > Z‘ﬂ; L to determine if a dummy operation
needs to be computed in the original version.

This achieves two crucial properties: uniformity of computation, since every
iteration performs a real multiplication of the same cost, leaving no distinction
between real and dummy steps; and the absence of unused data, since all multi-
ples z([i] P) are incorporated into the product, eliminating the risk of computing
unnecessary points.

Algorithm 4: Matryoshka 2.0 (based on [5])

Input: A degree £, a batch [¢;,...£,] and a point P such that £, - P = O
Output: The kernel polynomial h(z) for ¢ : E — E/(P)

Loby = Bt by o ALy, o L

2: t<+ b, — b

3: Compute (z-coordinates of) {P, [2]P, ..., [b,|P}.

4: h(z) + 1

5: forie[l,...,b] do > compute the linear part up to b;
6: m <+ z([i] P)

7 h(z) < h(z) - (x —m)

8: end for

9: forie[b+1,...,b] do
10: m < Sx([i]P)
11: a<+1
12: forje[(bi+1—1t),...,(i—1)} do > checks if z[¢P] has appeared already
13: a « a- cCOMPARE(z([i]P), z([j]P)) > returns -1 if so
14: end for
15: hi(z) < h(z) - (x —m)
16: hao(z) < h(z) -a-m
17: h(x) < hi(z) — ha(x)
18: end for
19: return h(z) < z% b . h(z) > fix the degree

The original Matryoshka implementation in CTIDH (and dCTIDH) uses pro-
jective space to represent z-only points as (X : Z), thereby avoiding costly
inversions. As in Vélu’s formulas, the kernel polynomial must be evaluated at
h}é(_li) to compute the codomain coefficient A’. In the projective setting, the

evaluations at 1 and —1 are directly integrated into the implementation.
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To adapt Algorithm 4 to projective space, we replace the affine expression

m = Sx([i]P) with its projective equivalent. Writing [i]P = (X; : Z;), we obtain

My Xi

m, 2-Z;

Accordingly, we updated in lines 15-17 with the following

>

c hm-((a-mx)—kmz—mz)

h. h - ((a-mg) +mg +m.)

The cCompare routine must also be modified to compare projective points, in-
creasing its cost to 2M. Finally, the degree correction step in line 19 simplifies
to a constant-time sign flip of h,.

Igonoring additions, the computation of one Matryoshkay, , j-isogeny is thereby
increased by S°_, (t—1+1)-2M, with t = ((¢, —1)/2) — ((£; — 1)/2), compared
to the dummy based version.

4.2 Matryoshka 1.414 (y/élu)

For the Matryoshka® variant using /élu, Algorithm J cannot be applied directly,
since not all multiples [i] K required for comparison are available due to the index
system that splits the computation into U x V UW. However, we can exploit the
structure of Matryoshka-+/élu: the U x V' component covers the kernel polynomial
only up to ¢, so all dummy factors necessarily appear in W. Moreover, W con-
sists solely of even multiples of P. This enables us to validate each z-coordinate of
the multiples [2]P, [4]P, ..., [“5L]P by checking whether they match the double
of their corresponding halves, that is, by verifying £ DBL(x([i]P)) = z([2{] P).

Depending on the batch size and the velusqrt parameters, in some cases, not
all odd halves are generated within U x V. Therefore, the odd points must be
computed explicitly in the range

(gr - 1)
2

—2-bs-gs)/2),

maz (bs, (

where (bs, gs) denote the baby-step/giant-step parameters of /élufor the ¢;-
isogeny. This ensures that every even multiple in W pairs with its half, allowing
for consistent validation without dummy points. Algorithm 5 summarizes the
resulting dummy-free Matryoshka algorithm adapted to /élu.

As a result of the xDBL trick, the overhead of projective Matryoshka 1.414
is just 2- M + 2 DAC for iteration, together with the ((br — 2 % bs x gs)/2) — bs
additionial xADD to compute the missing point halves.

5 We called Matryoshka 1.414 since v/2 ~ 1.414.
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Algorithm 5: Matryoshka 1.414

Input: A degree {, a batch [¢;,...£,], a point P such that ¢, - P = O and /élu pa-
rameters (bs, gs) for ¢;
Output: The kernel polynomial h(z) for ¢ : E — E/(P)

£—1
bk < 3

t < b, — b

Compute multiples according to /élu

Compute odd multiples [bs+2]P, ..., [(br —2xbsxgs)/2]P if bs < (br —2xbsx*gs)/2
hiz) <+ 1

£ —1 Lr—1
by = 5= by

6: Compute /élu using (bs, gs)

7: for i € [0,...,b, —2xbs*gs] do

8: m <+ sa([2%i+ 2]P)

9 a+1ifi <b, —2x*bsx*gselse —1
0

a < a- -CCOMPARE(xDBL(z([¢ + 1]P)), z([2 x i + 2] P)) > -1 if points are equal,
else 1.
11: hi(z) < h(z) - (x —m)
12: hao(z) < h(z)-a-m
13: h(z) < hi(x) — ha(x) > h is multiplied by  when a = —1

14: end for

15: return h(x) < x% 7P . h(z)

5 Implementation

We base our implementation on the dCTIDH code from https://github.com/
PaZeZeVaAt/dCTIDH, which in turn builds on the secsidh® implementation [4].
This code incorporates the optimal strategies introduced in [10] to accelerate
kernel point computations by balancing the trade-off between pushing points
through isogenies and computing kernels via DACs. In addition, it provides
assembly-optimized I, arithmetic for the different parameter sets.

We extend this implementation by integrating the new DACSHUND parame-
ters for DAC computation and by adapting Algorithm 4 and Algorithm 5 to
projective space.

5.1 Batch Configurations

To determine optimal parameter sets for dCTIDH, we build on the configurations
reported in the original dCTIDH work. In particular, we focus on the parameter
sets dCTIDH-194 and dCTIDH-205, which serve as natural starting points and
enable direct comparison with their non—dummy-free dCTIDH counterparts.

5 Publicly available at https://github.com/kemtls-secsidh/secsidh.
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Further analysis shows that the small primes 3, 5, and 7 in the set {¢;}
severely restrict possible batch structures under DACsHUND constraints. To ad-
dress this, we run our greedy search while excluding either 3, or 3,5,7 from the
set {4;}.

Table 1 presents the results for the dCTIDH-194 and dCTIDH-205 parameter
sets. We evaluate configurations with between 12 and 20 batches for each param-
eter set. A complete run over all batch configurations requires approximately 16
hours using 32 threads on a server equipped with dual AMD EPYC 7643 pro-
cessors (2.3 GHz, 192 threads in total).

Table 1: Best greedy results for the dCTIDH-194 and dCTIDH-205 parameter
sets.

variant ¢ skipped batches isogenies cost

dCTIDH-205 - 15 70 327,942
dCTIDH-194 - 17 75 334,458
dCTIDH-205 3 17 73 327,390
dCTIDH-194 3 14 73 332,920
dCTIDH-205 3,5,7 13 70 334, 846
dCTIDH-194 3,5,7 13 72 341,526

While the performance differences remain within ~ 5%, our results indicate
that the best configuration comes from skipping only the prime 3. Therefore,
we implement dummy-free dCTIDH for the parameter sets dCTIDH-205 and dC-
TIDH-194 by excluding the 3-isogeny.

Remark 4. The greedy search only optimizes the plain cost of isogeny evaluation
using optimal strategies. Therefore, it does not account for additional, albeit
constant, costs in the group action, such as cofactor removal, and a final inversion
to return an affine codomain, are not accounted for, explaining the differences.
to the benchmarks measured in Table 2.

5.2 Performance

All benchmarks were performed on an Intel Core i7-6700 (Skylake) processor,
running Debian 12 with Hyper-Threading and Turbo Boost disabled, and com-
piled using gcc-12.2.0.

Table 2 compares the results against dCSIDH as only other constant-time,
dummy-free and deterministic scheme, CTIDH (from the secsidh implementa-
tion), as well as the relevant dCTIDH parameter sets.

Table 2 compares the cost of the group action across different CSIDH imple-
mentations. As expected, dCSIDH is by far the most expensive: its fully determin-
istic and dummy-free design results in more than 1.5 million field multiplications
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Table 2: Results of a group action evaluation in multiplications (M), squarings
(S), and additions (a), and median cycle count (Gcyc) of 10,000 experiments,
performed on a Skylake CPU.

variant M S a Fp-mult. Geyc
CTIDH-2048 287,207 £ 21% 83,759 + 9% - 370,966 + 17% 1.652 + 17%
dCSIDH-2048 [4] 1,315,203 227,501 - 1,542,704 7.039
dCTIDH-2048-205 [5] 263, 545 50, 825 465, 224 314,370 1.418
dCTIDH-2048-194 [5] 266, 101 51,258 469, 258 317,359 1.410
This work (205) 303,058 54,074 560, 276 357,132 1.600
This work (194) 307,004 55,215 553,193 362,219 1.595

and a median cost of 7.0 Gigacycles, making it impractical in comparison with
other approaches.

Both parameter sets of dCTIDH (194 and 205) are more efficient, requiring
about 314-317k F, multiplications and completing a group action in roughly
1.410-1.418 Gigacycles. This confirms that batching and WOMBats provide a
strong efficiency, albeit at the cost of dummy operations.

Our dummy-free implementation adds a small overhead compared to dC-
TIDH: 358-362k F,-multiplications and 1.595-1.600 Gigacycles. This represents
a slowdown of only 12-14%, while completely eliminating dummy multiplications
in both DACs and Matryoshka isogenies (when we compare with dCTIDH). At
the same time, we still outperform the original CTIDH by about 4%, demon-
strating the advantages of the WOMBat keyspace, even under the additional
DACsHUND constraints.

Remark 5. Similar to dCTIDH, this work focuses solely on optimizing the group
action, which is just one part of a full key exchange. During key generation, One
also needs to compute a torsion point of order []¥¢;, and in the key derivation
step, the order of this point must be validated (which also ensures supersingu-
larity). However, excluding the degree 3 speeds up the point search and valida-
tion by up to 20% compared to the dCTIDH. Recent work by Pope, Reijnders,
Robert, Sferlazza, and Smith [15] used a pairing-based approach for validation,
suggesting a possible fourfold speedup. We leave the integration of pairing-based
validation and point search into the dCTIDH-framework as future work.

6 Conclusion

We have presented the first dummy-free implementation of dCTIDH, com-
bining DACsHUND with dummy-free Matryoshka isogenies. Our approach elim-
inates all dummy operations in both differential addition chains and isogeny
evaluations, providing the first dCTIDH implementation that is deterministic,
constant-time, and fully dummy-free. We showed how to adapt the greedy pa-
rameter search to incorporate these constraints, and identified viable parameter
sets for dCTIDH-194 and dCTIDH-205, noting that very small primes such as
3,5, 7 are incompatible with DACsHUND.
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In our implementation, we report results in Table 2 using the new batch-
ing strategy and the Matryoshka 1.414 variant. We show that even without
dummy isogenies, our performance remains close to that of dCTIDH. Moreover,
we demonstrate an improvement of roughly 4% over CTIDH for both our imple-
mentations of dCTIDH-2048-194 and dCTIDH-2048-205.
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