
Compressed verification for post-quantum
signatures with long-term public keys

Gustavo Banegas, Anaëlle Le Dévéhat, and Benjamin Smith

Inria and Laboratoire d’Informatique de l’Ecole polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

gustavo@cryptme.in
anaelle.le-devehat@inria.fr
smith@lix.polytechnique.fr

Abstract. Many signature applications—such as root certificates, se-
cure software updates, and authentication protocols—involve long-lived
public keys that are transferred or installed once and then used for many
verifications. This key longevity makes post-quantum signature schemes
with conservative assumptions (e.g., structure-free lattices) attractive for
long-term security. But many such schemes, especially those with short
signatures, suffer from extremely large public keys. Even in scenarios
where bandwidth is not a major concern, large keys increase storage costs
and slow down verification. We address this with a method to replace
large public keys in GPV-style signatures with smaller, private verifica-
tion keys. This significantly reduces verifier storage and runtime while
preserving security. Applied to the conservative, short-signature schemes
Wave and Squirrels, our method compresses Squirrels-I keys from
665 kB to 20.7 kB and Wave822 keys from 3.5MB to 207.97 kB.

Keywords: Post-quantum cryptography · Digital Signatures · Lattice-
based cryptography · Code-based cryptography · Compressed GPV.

1 Introduction

Post-quantum signatures are a primary requirement for the transition towards
quantum-resistant cryptography. Post-quantum lattice- and code-based signa-
tures can be roughly classified as conservative or structured, according to whether
their underlying hard problems involve general codes and lattices, or involve
special algebraic structure. These structures facilitate important practical im-
provements (often, much smaller public keys); but they also allow the possibility
of specialized attacks, so structured schemes generally have weaker security ar-
guments (i.e., their assumptions are stronger).

For example: compare the structured lattice scheme Falcon [13] with the
conservative lattice scheme Squirrels [11]. Both are based on the same GPV
∗ Author list in alphabetical order; see https://ams.org/profession/leaders/
CultureStatement04.pdf. This work was supported by the HYPERFORM consor-
tium, funded by France through Bpifrance, and by the France 2030 program under
grant agreement ANR-22-PETQ-0008 PQ-TLS. Date of this document: 2025-09-02.

https://ams.org/profession/leaders/CultureStatement04.pdf
https://ams.org/profession/leaders/CultureStatement04.pdf

2 Banegas, Le Dévéhat, Smith

design [14]. At NIST post-quantum security level 1, Falcon and Squirrels
have comparable signature sizes: 666 and 1019 bytes, respectively. But while
the structured lattices of Falcon give 897-byte public keys, the unstructured
lattices of Squirrels push public-key sizes up to 665 kilobytes.

Signature schemes with large public keys are unsuitable for applications
where public keys are regularly transmitted, such as TLS certificates. They are
better-suited to applications where

– the public key is pre-installed on the verifier’s device (for verifying signed
software updates, for example, or root certificates), or

– the public key is transmitted, but the cost of transmission is amortised over
many subsequent verifications (in ssh authentication, for example).

These applications often involve public keys with very long lifetimes: 20-30 years
for root certificates like ISRG Root X1 and GlobalSign Root R1, for example,
and a decade or more for IoT code-signing certificates and government-issued
digital IDs.

The long-term nature of keys in these applications makes conservative se-
curity assumptions reassuring, but working with very large public keys remains
expensive and inconvenient. This makes hash-based signatures like SLH-DSA
(SPHINCS+) [3, 21] an interesting choice: they offer conservative security as-
sumptions and very small public keys—but at the cost of large signatures and
computationally intensive verification. Squirrels offers shorter signatures and
faster verification, but its 665 kB public keys make long-term storage impractical.

1.1 Compressed verification

We want to reduce public key storage for conservative GPV-style signatures. The
core idea is that the verifier can (pre-)process the public key PK once to derive
a much smaller verification key VK (private to the verifier), which they can then
use in place of PK for confident—and often much faster—signature verification.

More formally: suppose we are given a signature scheme defined by three
algorithms, with an implicit security parameter λ:

– KeyGen: returns a private key SK and a public key PK.
– Sign: given a private key SK and a message m, returns a signature σ.
– Verify: given a putative signature σ on m under a public key PK, returns

Accept or Reject.

We will define three additional algorithms to be used by the verifier:

– CKeyGen: returns a (private) compression key CK.
– VKeyGen: given a public key PK and a (private) compression key CK, return

a private verification key VK.
– CVerify: given a putative signature σ on m and a verification key VK, returns

Accept or Reject.

The goal is to define these functions such that if VK = VKeyGen(CK,PK) for
some public key PK and some CK output by CKeyGen, then

Compressed public keys for conservative post-quantum signatures 3

1. if Verify(σ, m, PK) = Accept then CVerify(σ, m, VK) = Accept;
2. if Verify(σ, m, PK) = Reject then CVerify(σ, m, VK) = Reject with

probability ≥ 1− 1/2µ for a second security parameter µ; and
3. the size of VK is much smaller than the size of PK.

In terms of storage, CK is generated randomly and—once it has been used in
VKeyGen—need not be stored. Therefore, the verifier only needs to retain VK.

The verifier is free to choose µ; our goal is that the probability that CVerify
accepts one forgery after Q attempts is on the order of Q/#S, where S is the
verifier’s compression-keyspace. We will generally take #S ≈ 2µ with µ ≈ λ,
assuming Q is relatively small (in any case, Q ≤ 264). The verifier may force a
limit on Q by refreshing VK after a given number of rejections.

Figure 1 illustrates the signature protocol with compressed verification. CK
and VK are private to the verifier and are derived only from the signer’s public
key PK, and not the signer’s private key SK. Additionally, the verification algo-
rithm CVerify does not require PK or CK. From the signer’s point of view, the
original signature scheme is unchanged.

Signer (Compressed) Verifier
SK,PK← KeyGen() CK← CKeyGen()

PK

σ ← Sign(SK,m) VK← VKeyGen(PK, CK)

(m,σ)

Accept|Reject← CVerify(m,σ,VK)

Fig. 1. Compressed verification as a protocol.

1.2 Results

We introduce a framework for compressed verification in GPV-style signatures.
The verifier chooses a private homomorphism ϕ and uses it to compress incoming
public keys to compact private verification keys. We give security arguments for
the general construction, and consider two conservative instantiations: Squir-
rels [11], a lattice-based signature, and Wave [1, 9], a code-based signature.

Squirrels and Wave both have little special algebraic structure. This builds
confidence in their security, but it comes at an important practical cost: as we see
in Table 1, their public keys are very big. Indeed, among the submissions to the
NIST Postquantum Signatures on-ramp with no vulnerabilities found during
Round 1, Squirrels and Wave had the largest public keys at most security
levels.1 These oversized public keys would be a major factor in the non-selection
1 The classic parameters of UOV, a conservative multivariate scheme, had larger public

keys than Squirrels at NIST PQ Security Level 5, but other UOV variants had

https://www.uovsig.org/

4 Banegas, Le Dévéhat, Smith

of these schemes for Round 2 of the standardization process. They also make
Squirrels and Wave prime candidates to demonstrate the effectiveness of our
technique.

We developed two implementations of both Squirrels and Wave:

1. A comprehensive implementation in Python, and
2. A C implementation, based on the reference implementations of Squir-

rels [27] and Wave, used to measure performance improvements.

Table 1 shows the significant reduction in verifier storage achieved for both
Squirrels and Wave while maintaining security levels (and backward compat-
ibility with the original schemes). Specifically, we achieve a compression ratio
of up to 34x for Wave at higher security levels, and over 26x for Squirrels
at comparable levels. Compressed verification can also reduce verification time:
verification is up to 9.26% faster than ordinary verification for Squirrels
and up to 30% faster for Wave.

Table 1. Signature scheme parameters and verification times. All sizes are in bytes.
Compressed verification parameters are chosen such that µ ≈ λ (see §4 and §5 for
details). Verification times are cycle counts on an Intel Core i7-1365U processor running
Arch Linux Kernel 6.11.5-arch1. “Reference” refers to C reference implementations, and
“Compressed” to our own C code. Wave signatures are variable-length; sizes here are
upper bounds, and Wave signature length roughly doubles for compressed verification.

Reference Compressed verification Verification time (kCycles)
|σ| |PK| |VK| (|CK|) |PK|/|VK| Reference Compressed Speedup

NIST PQ Security Level 1, classical λ = 128
Squirrels-I 1 019 681 780 20 700 (3 360) 32.9× 280 254 9.3%
Wave822 822 3 677 390 171 594 (83 822) 21.4× 1 101 762 30.8%
SPHINCS+-SHAKE-128s 7 856 32 — — — 3 285 — —
XMSSMT -20-2 4 963 64 — — — 2 868 — —

NIST PQ Security Level 3, classical λ = 192
Squirrels-III 1 554 1 629 640 49 824 (8 480) 32.7× 551 520 5.69%
Wave1249 1 249 7 867 598 266 188 (183 134) 29.6× 2 330 1 865 19.9%
SPHINCS+-SHAKE-192s 16 224 48 — — — 5 374 — —
XMSSMT -40-4 9 893 64 — — — 5 729 — —

NIST PQ Security Level 5, classical λ = 256
Squirrels-V 2 025 2 786 580 90 598 (15 048) 30.8× 916 898 1.9%
Wave1644 1 644 13 632 308 370 436 (321 507) 36.8× 3 911 3 198 18.2%
SPHINCS+-SHAKE-256s 29 792 64 — — — 7 567 — —
XMSSMT -60-6 14 824 64 — — — 8 743 — —

As a baseline for conservative signatures, Table 1 includes the hash-based
schemes SPHINCS+ and XMSSMT [15]. For SPHINCS+, the authors provide
a benchmark script, which we ran in our environment; in the table we report the
fastest result produced by that script [26]. For XMSSMT , we used the reference
code [16] with the smallest parameters for each security level.

smaller keys. In any case, Wave is the undisputed super-heavyweight champion: its
Level I public keys were larger than even the Level V keys of any other scheme.

Compressed public keys for conservative post-quantum signatures 5

Remark 1. Compressed verification may also benefit schemes like Ajtai-based
hash-and-sign [7,19], which offer strong SIS-based security. The benefit is limited
for structured GPV-style schemes such as Falcon [13]: public keys are already
compact, and compressed verification requires the full (s1, s2) signature rather
than just s2, thus doubling signature size.

Remark 2. Our method is compatible with the PS-3 [24] and BUFF [8] trans-
forms, which strengthen security in certain attack models. However, both require
hashing PK with the message—a costly step when PK is large. We suggest storing
the much smaller Hash(PK) and hashing that with the message instead.

1.3 Related work: flexible signatures and progressive verification

Fischlin’s progressive verification for MACs [12] can probabilistically Reject early
or Accept with reduced confidence; [12, §4] suggests an extension to signatures.
Le, Kelkar, and Kate’s flexible signatures [17], verified up to a real “confidence
level” 0 ≤ α ≤ 1, quantify “partial” verification when expensive verification op-
erations are interrupted voluntarily by the user or forcibly by the OS. This can
improve fault-tolerance and reduce the cost of verification in embedded appli-
cations, but it does not reduce public-key or signature sizes. Indeed, the main
targets in [17] are hash-based signatures, where public keys are already extremely
compact; but extensions to GPV signatures are projected in [17, §5.3].

Taleb and Vergnaud revisit progressive verification in [28], analyzing Bern-
stein’s RSA trick (see §2) and GPV signatures (including Wave). They propose
verifying GPV signatures using a small set of linear combinations of columns
based on a random linear code, achieving exponential confidence growth with
runtime, unlike the linear growth in [12] and [17]. However, their approach sig-
nificantly increases public key size, which is the opposite of our goal.

Boschini, Fiore, Pagnin, Torresetti, and Visconti [6] propose an efficient ver-
ification for signatures which verify using a matrix-vector product Mv⊤. In an
“offline” phase they compute a matrix M′ formed by k random linear combina-
tions of the n rows of M; then, in an “online” phase, they verify using M′v⊤,
with reduced confidence but with a speedup of n/k. This is very similar to what
we do with Wave in §5, but they repeat the offline phase for every verification
rather than maintaining the same M′; indeed, their focus is minimising online
verification latency, rather than reducing overall verification time or key sizes.

2 Warmup: Bernstein’s trick for Rabin–Williams

As a warmup, we recall Bernstein’s fast Rabin–Williams signature verification [2].
We write Primes(µ) for the set of (exactly) µ-bit primes: that is,

Primes(µ) := {2µ−1 < p < 2µ | p is prime} .

6 Banegas, Le Dévéhat, Smith

2.1 Verifying Rabin–Williams signatures

A Rabin–Williams signature [25,30] on a message m under a public key N = pq
is a tuple σ = (e, f, salt, s) such that

efs2 ≡ Hash(salt ∥ m) (mod N) (1)

where 1 < s < N , salt is a salt value, and e ∈ {−1, 1} and f ∈ {1, 2} are chosen
such that s exists for the given salt, m, and N . That is: given σ = (e, f, salt, s),
m, and PK = N , Verify(σ, m, PK) returns Accept if and only if (1) holds.

If (1) is satisfied, then there is a unique integer −2N < t < 2N such that

efs2 − tN = Hash(salt ∥ m) . (2)

(The sign of t is equal to e.) Note that (2) holds over Z, not just over Z/NZ;
and any solution to (2) yields a solution to (1) and vice versa, so verifying (1)
or (2) is mathematically (though not algorithmically) equivalent.

Bernstein suggested speeding up verification by including t in σ and verify-
ing (2) modulo a random λ-bit prime ℓ (with λ the security parameter). The
verifier picks ℓ ∈ Primes(λ), computes Nℓ := N mod ℓ, and upon receiving
σ = (e, f, salt, s, t), checks

efs2ℓ − tℓNℓ ≡ hℓ (mod ℓ), (3)

where sℓ := s mod ℓ, tℓ := t mod ℓ, and hℓ := Hash(salt ∥ m) mod ℓ. Since ℓ ≪
N , this is faster than computing s2 mod N ; the speedup increases with λ. The
trade-off: including t doubles the size of σ, and generating ℓ is relatively costly.
However, as Bernstein notes, ℓ can be reused across multiple verifications—even
for different public keys—if kept secret, amortizing the cost.

This trick was proposed to speed up verification. We observe that it also saves
space if many signatures are verified under the same N , since Nℓ can be stored
instead of N (and this saves even more time, since Nℓ need not be recomputed).

In terms of our framework above,

– CKeyGen samples a random λ-bit prime ℓ;
– VKeyGen(CK = ℓ, PK = N) returns VK = (ℓ,Nℓ := N mod ℓ);
– CVerify(m, σ = (e, f, salt, s, t), VK = (ℓ,Nℓ)) returns Accept if and only if

efs2 − tNℓ ≡ Hash(salt ∥ m) (mod ℓ).

As Bernstein observes, the same technique applies to RSA signatures. How-
ever, if e is the public exponent, the resulting integer t is roughly Ne−1, making
the signature e times longer than a standard RSA signature.

2.2 Security argument for Bernstein’s trick

Let’s say that an ℓ-forgery on a message m for a public key PK = N is a vector
(e, f, salt, s, t) such that (2) (and hence (1)) fails, but (3) holds. That is: an
ℓ-forgery is a putative expanded Rabin–Williams signature that Verify with

Compressed public keys for conservative post-quantum signatures 7

PK = N would safely reject, but CVerify with VK = (ℓ,N mod ℓ) would accept.
(We assume that forging a signature for (1) or (2) is infeasible.)

An adversary that knows ℓ can easily construct ℓ-forgeries for any m and N .
Take a random salt, and find a t such that x := Hash(salt ∥ m) + tN is a square
modulo ℓ; then, compute s := x1/2 (mod ℓ) (which is easy because ℓ is prime);
finally, set e := 1 and f := 1.

Conversely, if we can find an ℓ-forgery σ = (e, f, salt, s, t) for (m,N) then

ℓ | Ξ(σ,m,N) where Ξ(σ,m,N) := efs2 − tN − Hash(salt ∥ m) .

At just λ bits, the prime ℓ is sufficiently small (for cryptographic values of λ) to
be recovered from Ξ(σ,m,N) with ECM [18,20,31].2

An adversary A who can compute an ℓ-forgery can therefore find ℓ, and
vice versa. But A’s interaction with the verifier is limited to submitting tuples
(σ,m,N), and observing whether they are accepted or rejected: that is, whether
the unknown ℓ divides Ξ(σ,m,N) or not. Let

µ := log2 ℓ and κ := ⌊(log2 N)/µ⌋ .

Observe that A learns nothing from an ℓ-forgery attempt (σ,m,N) such that
Ξ(σ,m,N) is not divisible by at least one µ-bit prime, and that if Ξ(σ,m,N) ̸=
0, then it is divisible by at most 2κ µ-bit primes (because |Ξ(σ,m,N)| < 2N2).
Therefore, if an adversary makes at most Q forgery attempts against a verifier
using a µ-bit prime ℓ for VK, then their success probability is at most

P (N,µ,Q) :=
2κQ

#Primes(µ)
. (4)

It follows from [10, Corollary 5.3] that

0.975
2µ−1

(µ− 1) log 2
< #Primes(µ) <

2µ−1

(µ− 1) log 2
. (5)

Thus, P (N,µ,Q) ≈ Q · (logN)/2µ−2. For µ ≈ λ, this bound remains negligible
even across more verifications than could feasibly be generated, without needing
to refresh ℓ or track rejections.

3 The general approach

3.1 GPV signatures

Consider a general GPV-style signature. Let M be a finitely generated module
over an integral domain R: in practice, M is either a lattice (with R = Z) or
a code (with R = Fq). Fix a cryptographic hash function Hash : {0, 1}∗ →M.
A public key is a random-looking M = (M0, . . . ,Mn−1) ∈Mn for some system
2 Further: if we can find two ℓ-forgeries σ1 and σ2—not necessarily for the same m

and N—then ℓ | g := gcd(Ξ(σ1,m1, N1), Ξ(σ2,m2, N2)), and in fact probably ℓ = g.

8 Banegas, Le Dévéhat, Smith

parameter n. A signature on a message m under M is a tuple σ = (salt, s) with
salt ∈ {0, 1}λ (a random salt) and s ∈ Rn such that

Constraint(s) and sM :=
∑n−1

i=0
siMi = Hash(salt ∥ m) (6)

where Constraint(s) is a predicate on s such as having small norm (in Squir-
rels) or a fixed number of nonzero entries (in Wave). An important variant has
Hash mapping into (a subset of) Rn instead of M, and (6) is replaced by

Constraint(s) and
(
Hash(salt ∥ m) + s

)
M = 0 . (7)

Example 1. In Squirrels, R = Z andM = Z/∆ for some large ∆ (though later
we lift toM = Z); verification uses (7) where Constraint(s) is ∥s∥22 ≤ ⌊β2⌋ for
a small system parameter β. For example, Squirrels-I has n = 1034, ∆ a 5048-
bit modulus formed as the product of 165 31-bit primes, and ⌊β2⌋ = 2026590.

Example 2. In Wave, R = F3 and M = Fn−k
3 for system parameters n and k;

verification uses (6) where Constraint(s) is #{i | si ̸= 0} = w for some (large)
w < n. For example: Wave822 has n = 8576, k = 4288, and w = 7668 ≈ 0.9n.

3.2 Compressed verification

Let Σ be a general GPV-style signature on an R-moduleM as described above,
and fix a set S of R-submodules of M. We define a compressed-verification
signature scheme Σcomp with the same KeyGen and Sign as in Σ, but with
Verify replaced by the following CKeyGen, VKeyGen, and CVerify:

– CKeyGen: samples a random K from S, and returns the quotient homomor-
phism CK := ϕ : M → M := M/K (which is unique up to isomorphism,
and has kernel kerϕ = K).

– VKeyGen: takes PK = M and returns VK := (ϕ,M := (ϕ(M1), . . . , ϕ(Mn))).
– CVerify: given m, σ = (salt, s), and VK, let h = Hash(salt ∥ m). If σ would

normally be verified with (6), then CVerify returns Accept if and only if
Constraint(s) and ϕ(sM) = ϕ(h); and since ϕ is a homomorphism of
R-modules, this means

Constraint(s) and
∑n−1

i=0
siMi = ϕ(h) inM . (8)

If verification normally uses (7), then CVerify returns Accept if and only if

Constraint(s) and
∑n−1

i=0
(si + hi)Mi = 0 inM . (9)

If (9) is used for verification, then CK = ϕ need not be included in VK.
If the verifier verifies many signatures from the same signer, then the cost of

CKeyGen and VKeyGen is amortised over the many subsequent CVerify calls. A
good choice of ϕ can also reduce the time required for each verification.

Compressed public keys for conservative post-quantum signatures 9

3.3 Correctness and security

The correctness of the signature scheme Σcomp described above follows from ϕ
being a homomorphism: (6) implies (8) and (7) implies (9). Our security goal is
EUF-CMA (Existential unforgeability under adaptive chosen-message attacks).
Recall that a signature scheme Σ = (Gen, Sign,Verify) is said to be EUF-CMA
if for all probabilistic polynomial-time (PPT) adversaries A, the probability that
A wins the following game is negligible in the security parameter λ:

1. The challenger gets (pk, sk)← Gen(1λ) and gives pk to the adversary A.
2. The adversary A has access to a signing oracle OSign and a verification oracle
OVerify. It may adaptively query OSign on messages m1, . . . ,mq and receive
valid signatures σi for each. It also may query OVerify on signatures σi and
know if it is valid signature or not.

3. A outputs a pair (m∗, σ∗).
4. A wins the game if:

(a) Verifypk(m
∗, σ∗) = 1 (i.e., the signature is valid), and

(b) m∗ /∈ {m1, . . . ,mq} (i.e., m∗ was not queried to the signing oracle).

We want to relate the EUF-CMA security of a GPV signature with com-
pressed verification to the assumed EUF-CMA security of the original scheme.
We model forgery attempts as attempts at solving a hidden-structure problem:

Definition 1 (Submodule Element Guessing Problem SEGP(S, T)). Let
M be an R-module, T a finite subset ofM, and S a set of R-submodules ofM.
The Submodule Element Guessing Problem SEGP(S, T) is: given a mem-
bership oracle OK for an unknown submodule K ∈ S taking input in T (i.e.: OK
takes t ∈ T and returns True if t ∈ K and False otherwise), find an element
t∗ ̸= 0 ∈ T such that OK(t∗) = True, i.e., t∗ ∈ K.

The set S in Definition 1 represents the set of possible kernels of the secret
homomorphism ϕ, and T represents the vectors constructed by forgery attempts
before input to ϕ.

Definition 2. Let Σ be a general GPV signature scheme as above. We define

T (Σ) :=
{
sM− h : h ∈ Im(Hash), s ∈ Rn | Constraint(s)

}
if Σ uses (6) for verification, or

T (Σ) :=
{
(h+ s)M : h ∈ Im(Hash), s ∈ Rn | Constraint(s)

}
if Σ uses (7) for verification.

Theorem 1. Let Σ be a general GPV-style signature scheme on an R-module
M, and fix a set S of R-submodules ofM. For each K in S, let ΣKcomp be the in-
stance of Σcomp where CKeyGen samples K from S. If A is an algorithm running
in time T that wins the EUF-CMA game for ΣKcomp with probability P , then there
exists an algorithm B running in time T +O(1) that succeeds with probability P
in winning the EUF-CMA game for Σ, or solving the SEGP(S, T (Σ)) instance
corresponding to K.

10 Banegas, Le Dévéhat, Smith

Proof. The challenger for EUF-CMA game of Σ gives PK = M to the algorithm
B. B has access to a signing oracle OSign, a verification oracle OVerify both associ-
ated to Σ and a submodule membership oracleOK associated to SEGP(S, T (Σ)).
B calls A on PK = M. B answers a signing oracle query m from A by OSign(m)
as the signing process is the same for Σ and ΣKcomp. If A makes a query to the
verification oracle for ΣKcomp on a signature σ = (salt, s), B queries OVerify(σ).
If OVerify(σ) = 1 then B answers 1 to A. Otherwise, If Σ verifies with (6) then
B sets t := sM − Hash(salt ∥ m); if Σ verifies with (7) instead, then B sets
t := (Hash(salt ∥ m) + s)M. B answers the verification oracle query by OK(t).

If A fails, then B fails. Otherwise, it receives a (m∗, σ∗ = (salt∗, s∗)) such that
Constraint(s∗) holds and CVerify(m∗, σ∗,VK) = Accept. B computes t∗, if
t∗ = 0, then Verify(m∗, σ∗,PK) would return Accept, so B returns (m∗, σ∗) and
wins the EUF-CMA game associated to Σ. Otherwise, t∗ is a nonzero element
of K, so B returns t∗ and finds a solution to SEGP(S, T (Σ)). ⊓⊔

Theorem 1 tells us that if Σ is EUF-CMA secure, then forging a signature for
ΣKcomp is at least as hard as solving the SEGP(S, T (Σ)) instance corresponding
to K. We can therefore choose secure parameters for Σcomp by choosing the set
S of compression keys such that random instances of SEGP(S, T (Σ)) are hard.

3.4 The hardness of SEGP

The hardness of SEGP(S, T) depends on the choice of S and T , and also on
the properties of R and M (and M/K for K in S). There are a few general
things that we can say before returning to the problem in the concrete cases
of Squirrels and Wave later. Let O be a membership oracle for a secret K
sampled uniformly random from S, and accepting only queries from T ; and let
ϕ :M→M/K be the quotient homomorphism. We can assume ϕ(T) =M/K.
The adversary’s goal is to find some t ̸= 0 in T such that O(t) = True: implicitly,
t ∈ (K \ {0}) ∩ T .

The adversary makes a series of adaptive queries t(1), t(2), . . . to O. Suppose
O(t(i)) = False for 1 ≤ i ≤ Q. The adversary wants ϕ(t(Q+1)) ̸= ϕ(t(i)) for
1 ≤ i ≤ Q, because none of the ϕ(t(i) were 0. In the best case for the adversary
all these values are distinct,3 so if the adversary chooses t(Q+1) arbitrarily then

P
[
O(t(Q+1))

]
≤ 1

#(M/K)−Q
.

(If the adversary can choose t(Q+1) such that it maps into a proper submodule
N ⊂ M/K then we can replace #(M/K) with #N and Q with the number of
prior queries landing in N , but this is not significant in our applications.)

In the meantime, the adversary has also learned that

K /∈
Q⋃
i=1

St(i) where St := {K ∈ S | t ∈ K} ⊂ S .

3 Note that collisions ϕ(t(i)) = ϕ(t(j)) are not useful to the adversary, because they
cannot detect them without querying O on all the t(i) − t(j).

Compressed public keys for conservative post-quantum signatures 11

In our applications S is finite, so there exists an integer

κT := max{#St : t ∈ T } ;

each unsuccessful query eliminates up to κT candidate kernels from considera-
tion. The adversary must choose t(Q+1) such that St(Q+1) ̸⊂

⋃Q
i=1 St(i) to have

any chance of success. If t(Q+1) is chosen arbitrarily among the elements of T
such that St(Q+1) \

⋃Q
i=1 St(i) is maximal, then the probability of success is

P
[
O(t(Q+1))

]
≤

#
(
St(Q+1) \

⋃Q
i=1 St(i)

)
#S −#

⋃Q
i=1 St(i)

≤ κT
#S − κTQ

. (10)

For EUF-CMA security with parameter µ against this adversary, we need to
ensure the success probability after Q queries is ≤ 2−µ, so

min(#S/κT ,#(M/K)) ≥ 2µ +Q . (11)

We should therefore sample K from an S chosen such that (at least)

#S/κT ≥ 2µ and #(M/K) ≥ 2µ for each K ∈ S , (12)

and we should replace the verification key when the number of (failed) com-
pressed verifications approaches 2µ.

Heuristically, we will suppose that the adversary cannot improve on any strat-
egy that simply enumerates queries t(i+1) while maximising #St(i+1) \

⋃i
j=1 St(j) .

Indeed, to do so they would need more information on ϕ(x) for unqueried x.
Our heuristic is that this information has to come from exploiting the R-module
structures of M andM/K, but these structures generally do not help.

First, (ϕ(x) ̸= 0)∧ (ϕ(y) ̸= 0) ≠⇒ ϕ(x+ y) ̸= 0 unless y ∈ Rx or x ∈ Ry.
This tells us that given the results of O(t(i)) for 1 ≤ i ≤ Q, we cannot predict
the result of O(t(Q+1)) for general linear combinations t(Q+1) =

∑Q
i=1 αit

(i).
Looking at scalar multiplication, there are two cases.

1. If α ̸= 0 ∈ R is invertible onM/K, then ϕ(x) = 0 ⇐⇒ ϕ(αx) = 0 for all x.
In this case, if we knowO(x) = False, then we can predict thatO(αx) = False
without queryingO on αx (and vice versa). But these “virtual” queries cannot
not help the adversary, because Sαx = Sx for all such α.

2. If α ̸= 0 ∈ R is not invertible on M/K, then ϕ(x) = 0 =⇒ ϕ(αx) = 0 for
all x, but the converse does not hold; likewise, Sx ⊂ Sαx but the inclusion
may be strict. If such elements α are known, then the adversary should query
on αx instead of x to maximise #Sαx (and hence #St(i+1) \

⋃i
j=1 St(j)). If

these α exist but are not known to the adversary, then they should try to
guess them in order to approach the ideal bound of (10).

In our application to Wave, R = F3 is a field, so we are always in the first
situation. For Rabin–Williams and Squirrels, R = Z and M/K = Z/dZ for
some d unknown to the adversary. Every query is α · 1 for some α, and the
adversary’s goal is precisely to find α ̸= 0 divisible by the unknown d: that is,
they are (or are trying to be) in the second situation.

12 Banegas, Le Dévéhat, Smith

Remark 3. The bounds in (12) may be overly pessimistic: even if SEGP(S, T (Σ))
is hard, forging signatures in ΣKcomp for random K in S may be significantly
harder. With GPV-style signatures, a solution t to the SEGP(S, T (Σ)) instance
for K gives a forgery against ΣKcomp only if we can construct (m,σ = (salt, s))
mapping to t; and this is made difficult by the need to satisfy Constraint(s).
After all, if we could find (m,σ) for arbitrary t then we could find them for 0, and
thus construct forgeries in the original scheme Σ. For a computationally bounded
adversary, it may be infeasible to construct (m,σ) yielding implicit queries t with
large #St, which means the success probability is actually much lower—and then
we can make S (and thus, potentially, |VK|) much smaller. Hence, while setting
parameters to make SEGP hard will guarantee unforgeability, these parameters
may also be much larger than what is required for EUF-CMA in practice.

4 Compressed verification for Squirrels

Now we turn our attention to Squirrels. The challenge here is to define com-
pressed verification algorithms that, like Squirrels, avoid multiprecision arith-
metic. To simplify presentation, we use the following notation:

Definition 3. Given a list of primes m = (m1, . . . ,ms), we write

[[x]]m :=
(
x mod m1, . . . , x mod ms

)
for all x ∈ Z .

4.1 The Squirrels signature scheme

Squirrels is a GPV signature on unstructured lattices. More precisely, it uses
co-cyclic lattices: n-dimensional lattices L such that Zn/L = Z/∆Z for some ∆.
Co-cyclic lattices are dominant among full-rank integer lattices [22]: their natural
density is ≈ 85%. Squirrels works with co-cyclic lattices L of determinant

∆ := p1 · · · ps

where p = (p1, . . . , ps) is a fixed tuple of 31-bit primes (the length s depends on
the security parameter). Table 2 gives the Squirrels parameter sets.

Squirrels is built on the one-way function

f : Dn −→ Z/∆Z
x 7−→ xAT (mod ∆),

(13)

where A is the matrix defining L and Dn = {e ∈ Zn | ∥e∥ ≤ β}. One-wayness
depends on the hardness of GSISn,∆,β , that is, finding a vector x such that
xAT ≡ 0 (mod ∆) and ∥x∥ ≤ β for some small β.

Suppose L is co-cyclic of dimension n and determinant ∆. We can specify L
with the row-HNF of its generating matrix, which is determined by a vector

vcheck = (vcheck,1, . . . ,vcheck,n) ∈ (Z/∆Z)n with vcheck,n = −1 .

Compressed public keys for conservative post-quantum signatures 13

Table 2. Parameters for Squirrels instances.

NIST Security Level 1 2 3 4 5

Lattice dimension n 1034 1164 1556 1718 2056
Hash space size q 4096 4096 4096 4096 4096
Max. signature square norm ⌊β2⌋ 2 026 590 2 442 439 4 512 242 3 659 372 5 370 115
Number s of small primes 165 188 262 275 339
Bitlength of ∆ 5048 5738 8017 8402 10347

Signature Size (B) 1019 1147 1554 1676 2025
Public Key Size (B) 681 780 874 576 1 629 640 1 888 700 2 786 580

The public key encodes vcheck as a list of lists of residues mod the small primes:

PK =
(
(vi,j := vcheck,i mod pj)

n−1
i=1

)s
j=1

(since vcheck,n = −1 by convention, there is no need to store it or any of the vn,j).
The vi,j are encoded as signed twos-complement 32-bit integers, but they are
all non-negative (except the vn,j , which are all −1 and not stored anyway); in
particular, 0 ≤ vi,j < 231 for all 1 ≤ i < n and 1 ≤ j ≤ s.

The private key encodes a “good” basis for L, which allows sampling short
vectors in L following a Gaussian distribution using Klein’s trapdoor sampler.
KeyGen ensures that each vcheck,i looks like a uniform random integer modulo ∆.

We now focus on Squirrels verification (KeyGen and Sign are detailed
in [11]). The verifier accepts σ = (s, salt) if two conditions are met:
1. The vector s is short: ∥s∥ ≤ β, which is more easily checked as

Constraint(s) : ∥s∥2 ≤ ⌊β2⌋ .
2. The vector c := s+ h (where h := Hash(salt ∥m)) is in L. That is,∑n

i=1
civcheck,i ≡ 0 (mod ∆) , (14)

or equivalently (by the CRT)∑n

i=1
civi,j ≡ 0 (mod pj) for all 1 ≤ j ≤ s . (15)

We can thus verify by checking (15) for each of the pj in turn, as in Algorithm 1.

Algorithm 1: Verification algorithm for Squirrels.
Parameters : q, n, ⌊β2⌋, and P∆ = (p1, . . . , pm)

Input: Signature σ = (salt, s), message m, public key PK = ((vi,j)
n−1
i=1)mj=1 with

vi,j = vcheck,i mod pj

Output: Accept if σ is a valid signature on m under PK, otherwise Reject.
1 s← Decompress(s)

2 if s =⊥ or ∥s∥22 > ⌊β2⌋ then
3 return Reject

4 c← s + HashToPoint(m ∥ salt, q, n)
5 foreach 1 ≤ j ≤ m do // Trivially parallelizable
6 S ←

∑n−1
i=0 civi,j mod pj

7 if S − cn ̸= 0 mod pj then // Uses vcheck,n = −1
8 return Reject

9 return Accept

14 Banegas, Le Dévéhat, Smith

4.2 Homomorphisms for Squirrels verification

Squirrels is an instance of our general framework withR = Z andM = Z/∆Z.
But the only homomorphisms from Z/∆Z map through Z/∆′Z for ∆′|∆, and
while a verifier could choose a secret ϕ by choosing a secret subset of the pj ,
an adversary who could forge a signature for a large subset of the pj would fool
many verifiers. There are many more homomorphisms from Z, and we can lift
Squirrels trivially to M = Z if we replace (14) with the equivalent condition∑n

i=1
ci · vcheck,i = k∆ for some integer k . (16)

Let the verifier choose a secret list of secret 31-bit primes r = (r1, . . . , rt),
each prime to ∆. The parameter t is a function of the desired verification security
level, to be determined later in §4.5. Now the verifier could check∑n

i=1
ci · (vcheck,i mod rj) ≡ k(∆ mod rj) (mod rj) for 1 ≤ j ≤ t (17)

—but k is not included in the signature, and re-computing it is the same com-
putation as a full Squirrels verification. Instead, we will verify by implicitly
recovering k modulo

∏
j rj , and checking that it is in the appropriate range.

First, we need to compute each of the [[vcheck,i]]r from the [[vcheck,i]]p =
(vi,j = vcheck,i mod pj)

s
j=1. In the spirit of Squirrels, we want to avoid mul-

tiprecision integer arithmetic, so we need to compute the [[vcheck,i]]r without
reconstructing any of the integers vcheck,i. Our main tool is the explicit CRT.4

Definition 4. With the notation above: for each 1 ≤ i ≤ s, we write ∆i for
∆/pi, and let qi be the the unique integer in (1, pi) such that qi∆i ≡ 1 (mod pi).

We will never explicitly compute with the ∆i (they are a notational conve-
nience). We will need the qi, and these can be precomputed in advance (using
e.g. Algorithm 7 in Appendix A). Each is a positive 31-bit integer.

Lemma 1 (Explicit CRT). If 0 ≤ x < ∆ and (x1, . . . , xs) = [[x]]p, then

x = α∆− ⌊α⌋∆ where α =
∑s

i=1
xiqi/pi . (18)

Proof. Observe that α is a rational number, but α∆ is an integer. The CRT says
x ≡ α∆ (mod ∆), so obviously α∆− ⌊α⌋∆ ≡ x (mod ∆). But 0 ≤ α− ⌊α⌋ < 1
by construction, so 0 ≤ α∆− ⌊α⌋∆ < ∆, so α∆− ⌊α⌋∆ = x. ⊓⊔

Lemma 1 gives an exact expression for 0 ≤ x < ∆ in terms of [[x]]p that
we can use to compute [[x]]r by computing the integers α∆ and ⌊α⌋∆ modulo
each rj . We precompute the qi, [[∆i]]r, and [[∆]]r. Computing α∆ =

∑
i xiqi∆i

modulo rj is straightforward. The interesting part is determining ⌊α⌋, and thus
computing ⌊α⌋ mod rj , without computing α. We will do this using fixed-point
approximations, as in [4]. Lemma 2, an adaptation of [4, Lemma 3.1], shows that
with a relatively low precision we can determine ⌊α⌋ up to a possible error of 1.
4 This is similar to the modular reduction in RNS arithmetic in [4], but there, p can

be freely chosen to optimise computations on the operands; here, p is fixed.

Compressed public keys for conservative post-quantum signatures 15

Lemma 2. Let α1, . . . , αs be non-negative real numbers, and set α :=
∑s

j=1 αj.
Fix some integer a ≥ log2 s+ 1. Then

f :=
⌊ s

2a
+

1

2a

∑s

j=1

⌊
2aαj

⌋⌋
is either ⌊α⌋ or ⌊α⌋+ 1 .

Further, if α− ⌊α⌋ < 1− s/2a then f is exactly ⌊α⌋.

Proof. Note that 2a ≥ 2s, so s/2a ≤ 1/2. Let q := (1/2a)
∑

j⌊2aαj⌋. By con-
struction, 0 ≤ 2aαj − ⌊2aαj⌋ < 1 for each 1 ≤ j ≤ s. Summing over j gives
0 ≤ 2aα− 2aq < s, so 0 ≤ α− q < s/2a; so ⌊α⌋ < s/2a + q ≤ s/2a + α. Taking
floors gives ⌊α⌋ ≤ f ≤ ⌊s/2a+α⌋. But ⌊s/2a+α⌋ is either ⌊α⌋ or ⌊α⌋+1, because
0 < s/2a ≤ 1/2, proving the first statement. For the second, if α−⌊α⌋ < 1−s/2a
then α+ s/2a < ⌊α⌋+ 1, so ⌊α+ s/2a⌋ = ⌊α⌋, and thus f = ⌊α⌋. ⊓⊔

Theorem 2. Fix an integer a ≥ log2(s) + 1. Given r, [[∆]]r, ([[∆i]]r)
s
i=1, and

[[x]]p for some 0 ≤ x < ∆, Algorithm 2 returns [[z]]r where z is either x or
x−∆. Further: if x < (1− s/2a)∆, then z = x.

Proof. Algorithm 2 evaluates (18) modulo rj for 1 ≤ j ≤ t, computing the floor
using Lemma 2 with αi = xiqi/pi for 1 ≤ i ≤ s. ⊓⊔

Algorithm 2: Explicit CRT: computing [[x]]r or [[x−∆]]r from [[x]]p
Parameters : Squirrels prime vector p = (p1, . . . , ps) and CRT coefficients

(q1, . . . , qs); an integer a ≥ log2 s + 1 (fixed-point precision)
Input: Secret prime list r; [[∆]]r, ([[∆i]]r)

s
i=1, and [[x]]p for 0 ≤ x < ∆

Output: [[z]]r, where z = x or x−∆ (if x < (1− s/2a)∆, then z = x)
1 function ModECRT(r, [[∆]]r, ([[∆i]]r)

s
i=1, [[x]]p)

2 (z1, . . . , zt)← (0, . . . , 0)
3 f ← s
4 foreach 1 ≤ j ≤ s do
5 yj ← xj · qj
6 f ← f + ⌊2ayj/pj⌋ // See Remark 5
7 foreach 1 ≤ k ≤ t do
8 yj,k ← yj mod rk
9 zk ← (zk + yj,k ·∆j,k) mod rk

10 f ← ⌊f/2a⌋ // Right-shift f by a
11 foreach 1 ≤ k ≤ t do
12 zk ← (zk − f ·∆k) mod rk

13 return (z1, . . . , zt)

Remark 4. Theorem 2 recovers [[x]]r or [[x − ∆]]r from [[x]]p. To guaranteee
a result of [[x]]r requires increasing the precision to a ∼ log2 ∆, which means
working with integers the size of ∆; but then we may as well reconstruct x.

Remark 5. As noted in [4], the floors in Line 6 of Algorithm 2 can be computed
by repeatedly doubling yj modulo pj and counting overflows.

4.3 Compressed verification for Squirrels

Recall that our goal is to verify (16) by evaluating (17), namely∑n

i=1
ci · vcheck,i ≡ k∆ (mod rj) for each 1 ≤ j ≤ t ,

16 Banegas, Le Dévéhat, Smith

but without knowing k. Given a public key PK and a compression key CK :=(
r, ([[∆i]]r)

s
i=1, [[∆]]r, (I1, . . . , It)

)
, for each 1 ≤ i ≤ n we use ModECRT to compute

[[v̄i]]r := ModECRT(r, [[∆]]r, ([[∆j]]r)
s
j=1, [[vcheck,i]]p = (vi,j)

s
j=1)

= [[vcheck,i − ϵi∆]]r where ϵi ∈ {0, 1} is unknown.

The rj are chosen such that rj ∤ ∆, so if we let

k′j :=
(∑n

i=1
civ̄i,j

)
Ij mod rj where Ij := ∆−1 mod rj for 1 ≤ j ≤ t ,

then the system of verification equations (17) becomes

k′j ≡ k′ (mod rj) where k′ := k +
∑n−1

i=1
ϵici . (19)

Lemma 3 below shows that

– If (16) holds, then k′ is a small integer (Table 3 gives bounds on k′ for each
Squirrels instance), small enough that k′j = k′ as an integer for each j.

– If (16) does not hold, then k′ does not exist, and the k′j look like random
(and generally large) values modulo each of the rj .

This distinction is the basis of our CVerify for Squirrels: we compute
(k′1, . . . , k

′
t), and Accept if k′1 = · · · = k′t and k′1 is within the bounds on k′;

otherwise, we Reject. Note that even if the adversary has full control over the ci,
they cannot control the k′j , because r and the Ij are unknown.

Lemma 3. With Squirrels parameters q ≪ ∆ and ⌊β2⌋ ≪ ∆: if ∥s∥22 ≤ ⌊β2⌋,
then the integer k′ of (19) satisfies

k′min ≤ k′ ≤ k′max where

{
k′min := −

⌊
2
√
n⌊β2⌋

⌋
− 1 ,

k′max := 2(n− 1)(q − 1) +
⌊
2
√
n⌊β2⌋

⌋
+ 1 .

Proof. By definition,

k′ =

(
n−1∑
i=1

ciβi

)
− cn

∆
with βi =

vcheck,i

∆
+ ϵi

for 1 ≤ i < n, so
k′ + E = H + S

where

H =

n−1∑
i=1

hiβi, S =

n−1∑
i=1

siβi, E =
cn
∆

.

For 1 ≤ i < n, we have 0 ≤ vcheck,i < ∆, so 0 ≤ βi < 2.
Thus,

−S′ − E < k′ < H ′ + S′ + E

Compressed public keys for conservative post-quantum signatures 17

where

H ′ = 2

n−1∑
i=1

hi and S′ = 2

n∑
i=1

|si|

(note: we include |sn| in S′).
But 0 ≤ |E| ≤ hn+|sn|

∆ < 1 because

hn < q ≪ ∆ and |sn| ≤ ⌊β2⌋ ≪ ∆,

so
−S′ − 1 < k′ < H ′ + S′ + 1.

Now,

0 ≤ S′ ≤ 2
√
n∥s∥2 ≤ 2

√
n⌊β2⌋, 0 ≤ H ′ ≤ 2(n− 1)(q − 1)

and k′ is an integer, so⌈
−2
√

n⌊β2⌋
⌉
− 1 ≤ k′ ≤ 2(n− 1)(q − 1) +

⌊
2
√

n⌊β2⌋
⌋
+ 1,

and the result follows. ⊓⊔

Table 3. Values of k′
min and k′

max from Lemma 3 for the Squirrels instances in [11].
Note that k′

max − k′
min is a 24-bit integer except for Squirrels-V, where it is 25 bits.

Instance Squirrels-I Squirrels-II Squirrels-III Squirrels-IV Squirrels-V

k′
min -91554 -106640 -144446 -15879 -210152

k′
max 8551824 9631610 9603896 14220809 17040602

The verification key VK is
(
r, (I1, . . . , It), ([[v̄i]]r)

n−1
i=1

)
, so

|VK| = 4(n+ 1)t bytes and |PK| = 4(n− 1)s bytes .

The key-compression ratio is |PK| : |VK| ≈ s : t. See Table 4 for sample values.
The compression key CK requires 4(s+ 3)t bytes. The values of ([[∆i]]r)

s
i=1,

[[∆]]r, and (I1, . . . , It) may be left out of CK, thus reducing |CK| to 4s bytes, but
this implies recomputing them from r and p for every verification key generation.

4.4 The algorithms

Algorithms 3, 4, and 5 formalise CKeyGen, VKeyGen, and CVerify for Squirrels.

Algorithm 3: CKeyGen (compression key generation) for Squirrels.
Parameters : n, s, ∆, p, (∆1, . . . , ∆s), [[∆i]]p, t
Output: CK

1 Sample a list r = (r1, . . . , rt) of random 31-bit primes // Use Lemma 4
2 Compute ([[∆i]]r)

s
i=1 and [[∆]]r from p // Using e.g. Algorithm 8 in App. A.

3 for 1 ≤ j ≤ t do
4 Ij ← ∆−1 mod rj // Use Ij = (∆ mod rj)

−1 mod rj

5 return CK :=
(
r, ([[∆i]]r)

s
i=1, [[∆]]r, (I1, . . . , It)

)

18 Banegas, Le Dévéhat, Smith

Algorithm 3 requires randomly sampling 31-bit primes, which is easy using
the criteria of [23]. Recall that an odd integer r = d2u+1 is a strong pseudoprime
to the base a if ad ≡ 1 (mod r) or ad2

v ≡ −1 (mod r) for some 0 ≤ v < u.

Lemma 4. Let 230 < r < 231 be odd. If r is a strong pseudoprime to the bases
2, 3, and 5, then either r is prime or r = 1157839381 = 24061 · 48121.

Proof. See [23, Page 1022]. ⊓⊔

Algorithm 4: VKeyGen (verification key generation) for Squirrels.
Parameters : n, s, ∆, p, (∆1, . . . , ∆s), [[∆i]]p, t
Input: CK =

(
r, ([[∆i]]r)

s
i=1, [[∆]]r, (I1, . . . , It)

)
, PK = (vcheck,i)

n−1
i=1

Output: VK
1 foreach 1 ≤ i < n do // May be parallelized
2 [[v̄i]]r ← ModECRT(r, [[∆]]r, ([[∆i]]r)

t
i=1, vcheck,i) // =[[vcheck,i + ϵi∆]]r

3 return
(
r, (I1, . . . , It), (v̄i,1, . . . , v̄i,t)

n−1
i=1

)
Algorithm 5 defines CVerify. Lines 6-13 must be implemented with constant-

time techniques to ensure no information on r is leaked in the event of rejection5.

Algorithm 5: CVerify (compressed verification) for Squirrels.
Parameters : n, s, ∆, p, (∆1, . . . , ∆s), [[∆i]]p, t
Input: σ = (salt, s), m, VK =

(
r, (I1, . . . , It), (v̄i,1, . . . , v̄i,t)

n
i=1

)
Output: Accept or Reject

1 s← Decompress(s)

2 if s =⊥ or ∥s∥22 > ⌊β2⌋ then
3 return Reject

4 c← s + HashToPoint(m ∥ salt, q, n)
5 (a1, . . . , at)← (True, . . . ,True)
6 foreach 1 ≤ j ≤ t do // May be parallelized
7 k′

j ←
((∑n

i=1 civ̄i,j
)
Ij − k′

min

)
mod rj // k′

min: see Lemma 3
8 if k′

j > k′
max − k′

min then // k′
max − k′

min: see Lemma 3
9 aj ← False

10 if (a1 ∧ · · · ∧ at) ∧ (k′
1 = · · · = k′

t) then
11 return Accept
12 else
13 return Reject

4.5 Security argument

If Σ is Squirrels, then R =M = Z. Compressed Squirrels samples K from

S = {∆′Z : ∆′ is a product of t 31-bit primes} .

5 The implementation can be made constant-time by using constant-time arithmetic
routines (e.g. multiplication/modular reduction [5]) and replacing any conditional
branches with bit-masking operations.

Compressed public keys for conservative post-quantum signatures 19

Theorem 1 ensures EUF-CMA security for compressed Squirrels provided
SEGP(S, T (Σ)) is hard. For Squirrels parameters, T (Σ) ⊂ [0, 2q

√
n⌊β2∆⌋] ⊂

[0, 230∆): at most s 31-bit primes can divide any t ∈ T (Σ), so κT ≈ s!/(t!(s−t)!).
Now #S = P31!/(t!(P31− t)!) where P31 := #Primes(31), and #(M/K) ≈ 231t.
When t ≪ s, we have s!/(s − t)! ∼ st and P31!/(P31 − t)! ∼ P t

31. Looking
at [29, Table 3], we find that

P31 := #Primes(31) = 105097565− 54400028 ≈ 225.6 .

The heuristic of §3.4 therefore suggests taking t ≈ µ/(25.6 − log2(s)), where µ
is the targeted security level.

In reality, it is computationally infeasible to construct forgery attempts (m,σ)
that yield t with #St ≈ κT : this would mean constructing (m,σ) such that t is
divisible by another product ∆′ of s 31-bit primes, and this is essentially as hard
as forging a full Squirrels signature: that is, solving GSISn,∆,β . If we want an
(m,σ) mapping to a t with k 31-bit prime factors, and thus #St =

(
k
t

)
/#S, we

must solve a single GSIS instance with modulus ∆⋆ ≪ ∆. Indeed, it requires
a nontrivial computational effort to even construct a forgery attempt (m,σ)
yielding t with #St > 0. In our security estimates, we therefore model the
expected value of #St as a small constant, and hence we choose t such that
P31!/(t!(P31 − t)! is on the order of 2λ, which suggests taking t as in Table 4.
While the resulting security level µ is slightly smaller than λ in some cases, it
should be remembered that each forgery attempt requires an interaction with
the verifier, and is therefore substantially more expensive than (e.g.) the AES
circuit evaluations used to model post-quantum cryptographic attack costs.

Table 4. Suggested values for the number t of secret primes in r.

Original scheme Compressed verification
Instance λ s |PK| |σ| t µ |CK| |VK| |PK| : |VK|

Squirrels-I 128 165 681780 1019 5 121.1 3360 20700 32.94
Squirrels-II 128 188 874576 1147 5 121.1 3820 23300 37.54
Squirrels-III 192 262 1629640 1554 8 189.5 8480 49824 32.71
Squirrels-IV 192 275 1888700 1676 8 189.5 8896 55008 34.34
Squirrels-V 256 339 2786580 2025 11 256.3 15048 90508 30.79

5 Compressed verification for Wave

Wave is a GPV-style signature based on hard problems in ternary linear codes.
Very briefly: a Wave public key is a matrix PK = R ∈ Fk×(n−k)

3 such that
M = (In−k|R)⊤ in Fn×(n−k)

3 is a parity-check matrix for a permuted generalized
(U |U+V)-code C; knowledge of the relation between C and the component codes
U and V is a trapdoor allowing the signer to generate vectors s in Fn

3 such that

Constraint(s) and sM = Hash(salt,m) , (20)

20 Banegas, Le Dévéhat, Smith

where Constraint(s) is that s have a fixed, high weight w. An “original” Wave
signature (as in [9]) is σ = (salt, s). In the Wave NIST submission [1], s is
truncated to its last k entries (the other n− k entries are implicitly recovered in
verification). The special form of M = (In−k|R)⊤ allows us to rewrite (20) as

Constraint(s) and tM = 0 where t := s− (Hash(salt, s)|0k) . (21)

Wave has exceptionally large public keys: for example, Wave822, Wave1249,
and Wave1644 require 3.5MB, 7.5MB, and 13MB, respectively. This motivates
the use of compressed verification, where the verifier privately replaces the large
matrix M with a much smaller secret key VK derived via a compression matrix.

VKeyGen computes VK := (In−k | R)⊤C, where C is the verifier’s compres-
sion matrix. Only the bottom n− k− c rows of VK need to be stored, yielding a
total size of c(n− c)/4 bytes. CVerify then replaces the full-rank check tM = 0
with a lower-dimensional test tVK = 0 over Fc

3, as detailed in Algorithm 6.
Compressed verification requires “original” Wave signatures (as in [9]) and is in-
compatible with the truncated versions from [1]. Although full signatures can be
recovered from truncated ones using the public key, doing so during verification
defeats compression by reintroducing computational and storage overhead.

Algorithm 6: CVerify (compressed verification) for Wave
Input: message m, signature σ = (salt, s), and verification key VK
Output: Accept or Reject

1 if Weight(s) ̸= W then
2 return Reject

3 t← s− (Hash(salt ∥ m) ∥ 0k)
4 r← tVK
5 if r ̸= 0 then
6 return Reject

7 return Accept

The security argument for compressed Wave is particularly simple. Theo-
rem 1 ensures that ΣKcomp is EUF-CMA secure if SEGP(S, T (Σ)) is hard, where
S is the set of codimension-c subspaces ofM = Fn−k

3 and T (Σ) =M. We have
#S =

[
n−k

n−k−c
]
3
, where

[·
·
]
3

is the 3-binomial coefficient, #(M/K) = 3n−k−c,
and #St = κT (Σ) =

[
n−k−1

n−k−c−1
]
3

for every t ̸= 0 ∈M. This tells us that a naive
adversary that simply tries random forgery attempts (m,σ) is already close to
optimal. Intuitively: since C is a random projection, if t ̸= 0 then tC is a random
element of Fc

3, which is 0 (leading to an Accept) with probability 1/3c.
Indeed, if we admit the heuristic of §3.4 then we can take 2µ ≈ 3c: that is,

c ≈ log3(2)µ. Taking c to be a multiple of 8 simplifies implementation. Table 5
lists suggested values of c and corresponding sizes of CK and VK for Wave822,
Wave1249, and Wave1644.

Compressed public keys for conservative post-quantum signatures 21

Table 5. Parameters for (compressed) Wave. Sizes are in bytes. Wave signatures are
variable-length: the values of |σ| here are upper bounds, and |σ| roughly doubles for
the “original” (non-truncated) signatures required for compressed verification.

Security level Original scheme Compressed verification
Instance NIST PQ λ |σ| |PK| c µ |CK| |VK| |PK| : |VK|

Wave822 1 128 822 3 677 390 80 126.8 83 822 171 594 21.4
Wave1249 3 192 1249 7 867 598 120 190.2 183 134 266 188 29.6
Wave1644 5 256 1644 13 632 308 160 253.6 321 507 370 436 36.8

References

1. G. Banegas, K. Carrier, A. Chailloux, A. Couvreur, T. Debris-Alazard, P. Gaborit,
P. Karpman, J. Loyer, R. Niederhagen, N. Sendrier, B. Smith, and J.-P. Tillich.
WAVE – submission to NIST post-quantum signatures project, 2023. https://
wave-sign.org/.

2. D. J. Bernstein. RSA signatures and Rabin–Williams signatures: the state of the
art. 2008.

3. D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe.
The SPHINCS+ signature framework. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, page 2129–2146.
Association for Computing Machinery, 2019.

4. D. J. Bernstein and J. P. Sorenson. Modular exponentiation via the explicit chinese
remainder theorem. Math. Comput., 76(257):443–454, 2007.

5. J. W. Bos, T. Kleinjung, and D. Page. Efficient modular multiplication. Cryptology
ePrint Archive, Paper 2021/1151, 2021.

6. C. Boschini, D. Fiore, E. Pagnin, L. Torresetti, and A. Visconti. Progressive and
efficient verification for digital signatures: extensions and experimental results. J.
Cryptogr. Eng., 14(3):551–575, 2024.

7. Y. Chen, N. Genise, and P. Mukherjee. Approximate trapdoors for lattices and
smaller hash-and-sign signatures. In S. D. Galbraith and S. Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of Lecture Notes in Computer Science,
pages 3–32. Springer, 2019.

8. C. Cremers, S. Düzlü, R. Fiedler, M. Fischlin, and C. Janson. Buffing signature
schemes beyond unforgeability and the case of post-quantum signatures. In IEEE
Symposium on Security and Privacy, pages 1696–1714, 2021.

9. T. Debris-Alazard, N. Sendrier, and J. Tillich. Wave: A new family of trapdoor
one-way preimage sampleable functions based on codes. In ASIACRYPT 2019,
volume 11921, pages 21–51. Springer, 2019.

10. P. Dusart. Explicit estimates of some functions over primes. Ramanujan Journal,
45:227–251, 2018.

11. T. Espitau, G. Niot, C. Sun, and M. Tibouchi. SQUIRRELS - Square Unstructured
Integer Euclidean Lattice Signature, 2023.

12. M. Fischlin. Progressive verification: The case of message authentication. In IN-
DOCRYPT 2003, pages 416–429. Springer Berlin Heidelberg, 2003.

13. P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-fourier lattice-based
compact signatures over NTRU – submission to NIST post-quantum cryptography
project, 2018. https://falcon-sign.info/.

https://wave-sign.org/
https://wave-sign.org/
https://falcon-sign.info/

22 Banegas, Le Dévéhat, Smith

14. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, 2008, pages 197–206. ACM, 2008.

15. A. Hülsing, L. Rausch, and J. Buchmann. Optimal parameters for XMSS-MT. In
Security Engineering and Intelligence Informatics, pages 194–208, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

16. A. Hülsing and J. Rijneveld. XMSS reference implementation, 2024. https://
github.com/XMSS/xmss-reference.

17. D. V. Le, M. Kelkar, and A. Kate. Flexible signatures: Making authentication
suitable for real-time environments. In ESORICS 2019, pages 173–193, Cham,
2019. Springer International Publishing.

18. H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics,
pages 649–673, 1987.

19. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume
7237 of Lecture Notes in Computer Science, pages 700–718. Springer, 2012.

20. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

21. National Institute of Standards and Technology. Stateless hash-based digital sig-
nature standard. Technical Report Federal Information Processing Standards Pub-
lications (FIPS PUBS) 205, NIST, 8 2004.

22. P. Q. Nguyen and I. E. Shparlinski. Counting co-cyclic lattices. SIAM Journal on
Discrete Mathematics, 30(3):1358–1370, 2016.

23. C. Pomerance, J. Selfridge, and S. S. Wagstaff, Jr. The pseudoprimes to 25 · 109.
Mathematics of Computation, 35(151):1003–1026, 7 1980.

24. T. Pornin and J. P. Stern. Digital signatures do not guarantee exclusive ownership.
In ACNS 2005, volume 3531 of LNCS, pages 138–150, 2005.

25. M. O. Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Technical Report 212, MIT Laboratory for Computer Science, 1979.

26. SPHINCS+ Team. SPHINCS+ reference implementation, 2024. https://github.
com/sphincs/sphincsplus.

27. Squirrels team. Squirrels reference implementation, 2024.
Package from https://squirrels-pqc.org/ with sha256sum
c4fd2a961f177a2f49970ca1758bde1a676a2fd7b3e62ea0e0c0593955902ab7.

28. A. R. Taleb and D. Vergnaud. Speeding-up verification of digital signatures. Jour-
nal of Computer and System Sciences, 116:22–39, 2021.

29. S. S. Wagstaff. Is there a shortage of primes for cryptography? International
Journal of Network Security, 3:296–299, 2006.

30. H. C. Williams. A modification of the RSA public-key encryption procedure. IEEE
Transactions on Information Theory, 26:726–729, 1980.

31. P. Zimmermann and B. Dodson. 20 years of ECM. In Algorithmic Number Theory,
ANTS-VII, pages 525–542, 2006.

A Subroutines for the explicit CRT

We maintain the notation of §4: p = (p1, . . . , ps) is a list of distinct primes,
∆ :=

∏s
i=1 pi is their product, ∆i := ∆/pi and qi := ∆−1i (mod pi) for 1 ≤ i ≤ s.

Algorithm 7 computes (q1, . . . , qs). Algorithm 8 computes ([[∆i]]r)
s
i=1 and [[∆]]r.

given another list of primes r = (r1, . . . , rt) (all prime to ∆). These algorithms
are not optimal, but they avoid multiprecision arithmetic.

https://github.com/XMSS/xmss-reference
https://github.com/XMSS/xmss-reference
https://github.com/sphincs/sphincsplus
https://github.com/sphincs/sphincsplus
https://squirrels-pqc.org/

Compressed public keys for conservative post-quantum signatures 23

Algorithm 7: Explicit Modular CRT setup: q-coefficients.
Input: p = (p1, . . . , ps)
Output: (q1, . . . , qs) s.t. 0 < qi < pi and qi(∆/pi) ≡ 1 (mod pi) for 1 ≤ i ≤ s

1 function qCoefficients((p1, . . . , ps))
2 (q1, . . . , qs)← (1, . . . , 1)
3 foreach 1 ≤ i ≤ s do
4 foreach 1 ≤ j ≤ s, j ̸= i do
5 qi ← qi · pj mod pi

6 qi ← q−1
i mod pi

7 return (q1, . . . , qs)

Algorithm 8: Explicit Modular CRT setup.
Input: p = (pi)

s
i=1 and r = (rj)

t
j=1.

Output: ([[∆i]]r)
s
i=1 and [[∆]]r.

1 function ModECRTSetup(p, r)
2 m← [[1]]r

3 (c(1), . . . , c(s))← ([[1]]r, . . . , [[1]]r)
4 foreach 1 ≤ i ≤ s do
5 u← [[pi]]r // uj = pj or pj − rj
6 m← (m1u1 mod r1, . . . ,mtut mod rt)
7 foreach 1 ≤ j < i and i < j ≤ s do
8 c(j) ← (c

(j)
1 u1 mod r1, . . . , c

(j)
t ut mod rt)

9 return (c(1), . . . , c(s)), m

	Compressed verification for post-quantum signatures with long-term public keys

