DAGS - KEY ENCAPSULATION FROM DYADIC
GS CODES

Gustavo Banegasl, Paulo S. L. M. Barreto, Brice Odilon Boidje,
Pierre-Louis Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh
Thiécoumba Gueye, Richard Haeussler, Jean Belo Klamti, Ousmane
N'diaye, Duc Tri Nguyen, Edoardo Persichetti and Jefferson E.
Ricardini
https://www.dags-project.org

Technische Universiteit
e Eindhoven
University of Technology

March 20, 2018

!Department of Mathematics and Computer Science
Technische Universiteit Eindhoven
gustavo@cryptme.in

1/16

Structured Codes

DAGS - KEM

2/16

Code-based cryptography

» McEliece: first cryptosystem using error correcting codes
(1978); Based on the hardness of decoding random linear
codes.

Computational Syndrome Decoding
Given: H € IFS,”*")X”, y € Fg"fk) and w € N.
Goal: find a word e € F] with wt(e) < w such that He = y.

3/16

Code-based cryptography

» McEliece: first cryptosystem using error correcting codes
(1978); Based on the hardness of decoding random linear
codes.

Computational Syndrome Decoding
Given: H € IFS,”*")X”, y € Fg"fk) and w € N.
Goal: find a word e € F] with wt(e) < w such that He = y.

» Unique solution and hardness only if w is below a certain
threshold (GV bound).

3/16

“fast” Code-based cryptography 101

Key Generation:
» Choose w-error correcting code C;
» SK: code description A for C;

» PK: generator matrix G in systematic form for C.

4/16

“fast” Code-based cryptography 101

Key Generation:

» Choose w-error correcting code C;

» SK: code description A for C;

» PK: generator matrix G in systematic form for C.
Encryption:

> Message is a word m € Fgm;

» Select random error vector e € Fgm of weight w;

» c=mG +e.

4/16

“fast” Code-based cryptography 101

Key Generation:
» Choose w-error correcting code C;
» SK: code description A for C;
» PK: generator matrix G in systematic form for C.
Encryption:
> Message is a word m € Fgm;
» Select random error vector e € Fgm of weight w;
» c=mG +e.
Decryption:
» Set m =Decode(c) and return m;
» Return “fail” if decoding fails.

4/16

Structured Codes

Structured Codes

» Generalized Srivastava;
» Quasi-cyclic codes (QC);
» Quasi-dyadic codes (QD);
» Quasi-Dyadic + Goppa;
» Goppa codes;

» Others...

5/16

Structured Codes

Structured Codes
Quasi-Dyadic Codes (Misoczki, Barreto '09).

6/16

Structured Codes

Structured Codes
Quasi—Dyadic Codes (Misoczki, Barreto '09).

Several families have QC/QD description
GRS, Goppa, Generalized Srivastava (Persichetti'11).

6/16

Structured Codes

Structured Codes
Quasi—Dyadic Codes (Misoczki, Barreto '09).

Several families have QC/QD description
GRS, Goppa, Generalized Srivastava (Persichetti'11).

Use subfield subcode construction to encrypt in the subcode and
decrypt using parent code.

6/16

Structured Codes

Structured Codes
Quasi—Dyadic Codes (Misoczki, Barreto '09).

Several families have QC/QD description
GRS, Goppa, Generalized Srivastava (Persichetti'11).

Use subfield subcode construction to encrypt in the subcode and
decrypt using parent code.

Problem: extra structure = extra info for attacker.

6/16

Structured Codes

Structured Codes
Quasi—Dyadic Codes (Misoczki, Barreto '09).

Several families have QC/QD description
GRS, Goppa, Generalized Srivastava (Persichetti'11).

Use subfield subcode construction to encrypt in the subcode and
decrypt using parent code.

Problem: extra structure = extra info for attacker.

Critical algebraic attack (Faugere, Otmani, Perret, Tillich '10).

6/16

Generalized Srivastava Codes

Alternant codes with non-trivial intersection with Goppa codes.
Admit parity-check which is superposition of s blocks of size t x n.

7/16

Generalized Srivastava Codes

Alternant codes with non-trivial intersection with Goppa codes.
Admit parity-check which is superposition of s blocks of size t x n.
Each block Hy has jj-th element oy (nonzero field elements).
If t =1 this is a Goppa code.

Can generate QD-GS codes using (modified) algorithm for QD
Goppa.

Solution space defined by extension degree mt.

Similar performance, more flexibility, easier to resist FOPT

(mt > 20).

7/16

DAGS
Select hash functions G, H,K;

8/16

DAGS

Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;

8/16

DAGS

Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;

8/16

DAGS

Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;
» PK: generator matrix G in systematic form for C over .

8/16

DAGS

Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;
» PK: generator matrix G in systematic form for C over .

Encapsulation

» Choose random word m € IF’;;

8/16

DAGS

Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;
» PK: generator matrix G in systematic form for C over .

Encapsulation

» Choose random word m € IF’;;
» Compute (p || 0) =G(m), d =H(m) and set ;o = (p || m);

8/16

DAGS

Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;
» PK: generator matrix G in systematic form for C over .

Encapsulation

» Choose random word m € IF’;;
» Compute (p || 0) =G(m), d =H(m) and set ;o = (p || m);
» Generate e €]Fgm of weight w from seed o;

8/16

DAGS
Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;
» PK: generator matrix G in systematic form for C over .

Encapsulation

» Choose random word m € IF’;;

» Compute (p || 0) =G(m), d =H(m) and set ;o = (p || m);
» Generate e € Fgm of weight w from seed o;

» Output (c, d) where ¢ = uG + e and K =K(m).

8/16

DAGS

Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;
» PK: generator matrix G in systematic form for C over .

Encapsulation

» Choose random word m € IF’;;

» Compute (p || 0) =G(m), d =H(m) and set ;o = (p || m);
» Generate e € Fgm of weight w from seed o;

» Output (c, d) where ¢ = uG + e and K =K(m).

Decryption

» Set (1, €') = Decode(c) and parse ' = (p' || m');

8/16

DAGS

Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;
» PK: generator matrix G in systematic form for C over .

Encapsulation

» Choose random word m € IF’;;

» Compute (p || 0) =G(m), d =H(m) and set ;o = (p || m);
» Generate e € Fgm of weight w from seed o;

» Output (c, d) where ¢ = uG + e and K =K(m).

Decryption

» Set (1, €') = Decode(c) and parse ' = (p' || m');
» Recompute G(m'), d = H(m') and €”, then compare;

8/16

DAGS
Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;
» PK: generator matrix G in systematic form for C over .

Encapsulation

» Choose random word m € IF’;;

» Compute (p || 0) =G(m), d =H(m) and set ;o = (p || m);
» Generate e € Fgm of weight w from seed o;

» Output (c, d) where ¢ = uG + e and K =K(m).

Decryption

» Set (1, €') = Decode(c) and parse ' = (p' || m');
» Recompute G(m'), d = H(m') and €”, then compare;
» Return L if decoding fails or any check fails;

8/16

DAGS

Select hash functions G, H,K;
Key Generation

» Generate a QD-GS code C;
» SK: description for C (in alternant form) over Fgm;
» PK: generator matrix G in systematic form for C over .

Encapsulation

» Choose random word m € IF’;;

» Compute (p || 0) =G(m), d =H(m) and set ;o = (p || m);
» Generate e € Fgm of weight w from seed o;

» Output (c, d) where ¢ = uG + e and K =K(m).

Decryption

» Set (1, €') = Decode(c) and parse ' = (p' || m');
» Recompute G(m'), d = H(m') and €”, then compare;
» Return L if decoding fails or any check fails;

> Else return K =K(m').
8/16

About DAGS

Uses McEliece and generic KEM paradigm (Hofheinz, Hévelmanns, Kiltz
'17).

9/16

About DAGS

Uses McEliece and generic KEM paradigm (Hofheinz, Hévelmanns, Kiltz
'17).

Leverage “randomized" IND-CPA McEliece variant for tighter
security proof.

9/16

About DAGS

Uses McEliece and generic KEM paradigm (Hofheinz, Hévelmanns, Kiltz
'17).

Leverage “randomized" IND-CPA McEliece variant for tighter
security proof.

Efficient “Key Confirmation + Re-encryption" step.

Typical parameters:

qg|m| n k | s | t | Errors | PK Size (bytes) | SK Size (bytes) | Cipher text (bytes)
261 22112704 [26|11] 352 11,616 6,336 1,616

Advantages: small keys and ciphertext. Disadvantages:
Conservative parameters that makes DAGS slow.
Code at: https://git.dags-project.org/dags/dags

9/16

About DAGS implementation
Key generation

» Operations in Fy12 and in Fos;

10/16

About DAGS implementation
Key generation

» Operations in Fy12 and in Fos;
» Additions are “cheap”;
» Multiplications and inversions are costly; Originally with log
and i-log tables

» Random generation of a polynomial in Fyi2.

10/16

About DAGS implementation
Key generation

» Operations in Fy12 and in Fos;
» Additions are “cheap”;
» Multiplications and inversions are costly; Originally with log
and i-log tables

» Random generation of a polynomial in Fyi2.
Encapsulation

» Operations in Fyi2 and in Foye;
» Random generation of a polynomial in Fyi2;

» Hash function “call”.

10/16

About DAGS implementation
Key generation

» Operations in Fy12 and in Fos;
» Additions are “cheap”;
» Multiplications and inversions are costly; Originally with log
and i-log tables

» Random generation of a polynomial in Fyi2.
Encapsulation

» Operations in Fyi2 and in Foye;
» Random generation of a polynomial in Fyi2;

» Hash function “call”.

Decapsulation

» Operations in Fyi2 and in Fye;
» Random generation of a polynomial in Fyi2;

» Hash function “call”. 1o/ 16

DAGS Description

Key generation
The key generation process uses the following fundamental equation

- =—+ T + —. (1)

To build the vector h = (ho, ..., hp—1) of elements of Fgm, which is
known as signature of a dyadic matrix.

11/16

DAGS Description

Key generation

1 Generate dyadic signature h. To do this:
i. Choose random non-zero distinct hg and h; for
j=21=0,...,|logqg™|.
ii. Form the remaining elements using (1).
iii. Return a selection of blocks of dimension s up to length n.
2 Build the Cauchy support. To do this:
i. Choose a random offset w <> Fyn.
ii. Set uj=1/hi+w and v; =1/h; +1/hg + w for
i=0,...,s—landj=0,...,n— 1
iii. Setu= (up,...,us—1)and v=_(vo,...,Vs_1).

12/16

DAGS Description

Key generation

3 Form Cauchy matrix Ay = C(u, v).
4 Build blocks H;, i = 2,...t, by raising each element of H; to
the power of /.

5 Superimpose blocks to form matrix H.

6 Choose random elements z; <—$1qu such that z,; = z; for
i=0,....,m—1,j=0,...,s— L

7 Forom H=H- Diag(z).

8 Transform H into alternant form: call this H'.

9 Project H onto F using the co-trace function: call this Hp,se.

10 Write Hpase in systematic form (M | [,_x).
11 The public key is the generator matrix G = (I, | MT).
12 The private key is the alternant matrix H'.

13/16

DAGS Description

Encapsulation

Choose m < F¥'.

Compute r = G(m) and d = H(m).

Parse r as (p || o) then set = (p || m).

Generate error vector e of length n and weight w from o.
Compute c = uG +e.

Compute k = KC(m).

Output ciphertext (c,d); the encapsulated key is k.

No o b=

14/16

DAGS Description

Decapsulation

,_.
©

© 0N W

Input private key, i.e. parity-check matrix H' in alternant form.

Use H' to decode c and obtain codeword p’G and error €.
Output L if decoding fails or (') # w

Recover p/ and parse it as (p' || m’).

Compute ¥ = G(m’) and d’ = H(m').

Parse r' as (p" || o).

Generate error vector €’ of length n and weight w from o’.
Ife' £e’"Vvp #p’"Vvd+#d output L.

Else compute k = K(m').

The decapsulated key is k.

15/16

Questions

Thank you for your attention.
Questions?

Clear your mind ofsgquestions:

gustavo@cryptme.in
epersichetti@fau.edu

16 /16

	Structured Codes
	DAGS - KEM

