DAGS - KEY ENCAPSULATION FROM DYADIC GS CODES

Gustavo Banegas¹, Paulo S. L. M. Barreto, Brice Odilon Boidje, Pierre-Louis Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiécoumba Gueye, Richard Haeussler, Jean Belo Klamti, Ousmane N'diaye, Duc Tri Nguyen, Edoardo Persichetti and Jefferson E. Ricardini

https://www.dags-project.org

March 20, 2018

¹Department of Mathematics and Computer Science Technische Universiteit Eindhoven gustavo@cryptme.in

DAGS - KEM

Code-based cryptography

McEliece: first cryptosystem using error correcting codes (1978); Based on the hardness of decoding random linear codes.

Computational Syndrome Decoding

Given: $H \in \mathbb{F}_q^{(n-k) \times n}$, $y \in \mathbb{F}_q^{(n-k)}$ and $\omega \in \mathbb{N}$.

Goal: find a word $e \in \mathbb{F}_q^n$ with $wt(e) \leq \omega$ such that $He^T = y$.

Code-based cryptography

McEliece: first cryptosystem using error correcting codes (1978); Based on the hardness of decoding random linear codes.

Computational Syndrome Decoding

Given: $H \in \mathbb{F}_q^{(n-k) \times n}$, $y \in \mathbb{F}_q^{(n-k)}$ and $\omega \in \mathbb{N}$.

Goal: find a word $e \in \mathbb{F}_q^n$ with $wt(e) \leq \omega$ such that $He^T = y$.

• Unique solution and hardness only if ω is below a certain threshold (GV bound).

"fast" Code-based cryptography 101

Key Generation:

- ▶ Choose ω -error correcting code C;
- ▶ SK: code description Δ for C;
- ightharpoonup PK: generator matrix G in systematic form for C.

"fast" Code-based cryptography 101

Key Generation:

- ► Choose ω -error correcting code C;
- ▶ SK: code description Δ for C;
- ightharpoonup PK: generator matrix G in systematic form for C.

Encryption:

- ▶ Message is a word $m \in \mathbb{F}_{q^m}^k$;
- ▶ Select random error vector $e \in \mathbb{F}_{q^m}^n$ of weight ω ;
- ightharpoonup c = mG + e.

"fast" Code-based cryptography 101

Key Generation:

- ► Choose ω-error correcting code C;
- ▶ SK: code description Δ for C;
- ightharpoonup PK: generator matrix G in systematic form for C.

Encryption:

- ▶ Message is a word $m \in \mathbb{F}_{q^m}^k$;
- ▶ Select random error vector $e \in \mathbb{F}_{q^m}^n$ of weight ω ;
- ightharpoonup c = mG + e.

Decryption:

- ▶ Set m = Decode(c) and return m;
- Return "fail" if decoding fails.

Structured Codes

- Generalized Srivastava;
- Quasi-cyclic codes (QC);
- Quasi-dyadic codes (QD);
- Quasi-Dyadic + Goppa;
- Goppa codes;
- Others...

Structured Codes Quasi-Dyadic Codes (Misoczki, Barreto '09).

Structured Codes

Quasi-Dyadic Codes (Misoczki, Barreto '09).

Several families have QC/QD description

GRS, Goppa, Generalized Srivastava (Persichetti'11).

Structured Codes

Quasi-Dyadic Codes (Misoczki, Barreto '09).

Several families have QC/QD description GRS, Goppa, Generalized Srivastava (Persichetti'11).

Use subfield subcode construction to encrypt in the subcode and decrypt using parent code.

Structured Codes

Quasi-Dyadic Codes (Misoczki, Barreto '09).

Several families have QC/QD description GRS, Goppa, Generalized Srivastava (Persichetti'11).

Use subfield subcode construction to encrypt in the subcode and decrypt using parent code.

Problem: extra structure = extra info for attacker.

Structured Codes

Quasi-Dyadic Codes (Misoczki, Barreto '09).

Several families have QC/QD description GRS, Goppa, Generalized Srivastava (Persichetti'11).

Use subfield subcode construction to encrypt in the subcode and decrypt using parent code.

Problem: extra structure = extra info for attacker.

Critical algebraic attack (Faugère, Otmani, Perret, Tillich '10).

Generalized Srivastava Codes

Alternant codes with non-trivial intersection with Goppa codes. Admit parity-check which is superposition of s blocks of size $t \times n$.

Generalized Srivastava Codes

Alternant codes with non-trivial intersection with Goppa codes.

Admit parity-check which is superposition of s blocks of size $t \times n$.

Each block H_{ℓ} has ij-th element $\frac{z_j}{(v_i - u_{\ell})^i}$ (nonzero field elements).

If t = 1 this is a Goppa code.

Can generate QD-GS codes using (modified) algorithm for QD Goppa.

Solution space defined by extension degree *mt*.

Similar performance, more flexibility, easier to resist FOPT (mt > 20).

Select hash functions G, H,K;

Select hash functions G, H,K; Key Generation

► Generate a QD-GS code *C*;

Select hash functions **G**, **H**,**K**; Key Generation

- ► Generate a QD-GS code *C*;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;

Select hash functions **G**, **H**,**K**; Key Generation

- Generate a QD-GS code C;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;
- ightharpoonup PK: generator matrix G in systematic form for C over \mathbb{F}_q .

Select hash functions **G**, **H**,**K**; Key Generation

- Generate a QD-GS code C;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;
- **PK**: generator matrix G in systematic form for C over \mathbb{F}_q .

Encapsulation

► Choose random word $m \in \mathbb{F}_q^k$;

Select hash functions **G**, **H**,**K**; Key Generation

- Generate a QD-GS code C;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;
- ▶ PK: generator matrix G in systematic form for C over \mathbb{F}_q .

- ▶ Choose random word $m \in \mathbb{F}_q^k$;
- ▶ Compute $(\rho \parallel \sigma) = \mathbf{G}(m)$, $d = \mathbf{H}(m)$ and set $\mu = (\rho \parallel m)$;

Select hash functions **G**, **H**,**K**; Key Generation

- Generate a QD-GS code C;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;
- ▶ PK: generator matrix G in systematic form for C over \mathbb{F}_q .

- ▶ Choose random word $m \in \mathbb{F}_q^k$;
- ► Compute $(\rho \parallel \sigma) = \mathbf{G}(m)$, $d = \mathbf{H}(m)$ and set $\mu = (\rho \parallel m)$;
- ▶ Generate $e \in \mathbb{F}_{q^m}^n$ of weight ω from seed σ ;

Select hash functions **G**, **H**,**K**; Key Generation

- Generate a QD-GS code C;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;
- ightharpoonup PK: generator matrix G in systematic form for C over \mathbb{F}_q .

- ▶ Choose random word $m \in \mathbb{F}_q^k$;
- ► Compute $(\rho \parallel \sigma) = \mathbf{G}(m)$, $d = \mathbf{H}(m)$ and set $\mu = (\rho \parallel m)$;
- ▶ Generate $e \in \mathbb{F}_{q^m}^n$ of weight ω from seed σ ;
- Output (c, d) where $c = \mu G + e$ and K = K(m).

Select hash functions **G**, **H**,**K**; Key Generation

- Generate a QD-GS code C;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;
- ightharpoonup PK: generator matrix G in systematic form for C over \mathbb{F}_q .

Encapsulation

- ▶ Choose random word $m \in \mathbb{F}_q^k$;
- ► Compute $(\rho \parallel \sigma) = \mathbf{G}(m)$, $d = \mathbf{H}(m)$ and set $\mu = (\rho \parallel m)$;
- ▶ Generate $e \in \mathbb{F}_{a^m}^n$ of weight ω from seed σ ;
- Output (c, d) where $c = \mu G + e$ and K = K(m).

Decryption

▶ Set $(\mu', e') = Decode(c)$ and parse $\mu' = (\rho' \parallel m')$;

Select hash functions **G**, **H**,**K**; Key Generation

- Generate a QD-GS code C;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;
- ightharpoonup PK: generator matrix G in systematic form for C over \mathbb{F}_q .

Encapsulation

- ▶ Choose random word $m \in \mathbb{F}_q^k$;
- ► Compute $(\rho \parallel \sigma) = \mathbf{G}(m)$, $d = \mathbf{H}(m)$ and set $\mu = (\rho \parallel m)$;
- ▶ Generate $e \in \mathbb{F}_{a^m}^n$ of weight ω from seed σ ;
- Output (c, d) where $c = \mu G + e$ and K = K(m).

Decryption

- ▶ Set $(\mu', e') = Decode(c)$ and parse $\mu' = (\rho' \parallel m')$;
- ▶ Recompute G(m'), d = H(m') and e'', then compare;

Select hash functions **G**, **H**,**K**; Key Generation

- Generate a QD-GS code C;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;
- ightharpoonup PK: generator matrix G in systematic form for C over \mathbb{F}_q .

Encapsulation

- ▶ Choose random word $m \in \mathbb{F}_q^k$;
- ▶ Compute $(\rho \parallel \sigma) = G(m)$, d = H(m) and set $\mu = (\rho \parallel m)$;
- ▶ Generate $e \in \mathbb{F}_{q^m}^n$ of weight ω from seed σ ;
- Output (c, d) where $c = \mu G + e$ and K = K(m).

Decryption

- ▶ Set $(\mu', e') = Decode(c)$ and parse $\mu' = (\rho' \parallel m')$;
- ▶ Recompute G(m'), d = H(m') and e'', then compare;
- ▶ Return ⊥ if decoding fails or any check fails;

Select hash functions **G**, **H**,**K**; Key Generation

- Generate a QD-GS code C;
- ▶ SK: description for C (in alternant form) over \mathbb{F}_{q^m} ;
- ▶ PK: generator matrix G in systematic form for C over \mathbb{F}_q .

Encapsulation

- ▶ Choose random word $m \in \mathbb{F}_q^k$;
- ▶ Compute $(\rho \parallel \sigma) = G(m)$, d = H(m) and set $\mu = (\rho \parallel m)$;
- ▶ Generate $e \in \mathbb{F}_{a^m}^n$ of weight ω from seed σ ;
- Output (c, d) where $c = \mu G + e$ and K = K(m).

Decryption

- ▶ Set $(\mu', e') = Decode(c)$ and parse $\mu' = (\rho' \parallel m')$;
- ▶ Recompute G(m'), d = H(m') and e'', then compare;
- ightharpoonup Return ightharpoonup if decoding fails or any check fails;
- ▶ Else return K = K(m').

About DAGS

Uses McEliece and generic KEM paradigm (Hofheinz, Hövelmanns, Kiltz '17).

About DAGS

Uses McEliece and generic KEM paradigm (Hofheinz, Hövelmanns, Kiltz '17).

Leverage "randomized" IND-CPA McEliece variant for tighter security proof.

About DAGS

Uses McEliece and generic KEM paradigm (Hofheinz, Hövelmanns, Kiltz '17).

Leverage "randomized" IND-CPA McEliece variant for tighter security proof.

Efficient "Key Confirmation + Re-encryption" step.

Typical parameters:

q	m	n	k	5	t	Errors	PK Size (bytes)	SK Size (bytes)	Cipher text (bytes)
2 ⁶	2	2112	704	2 ⁶	11	352	11,616	6,336	1,616

Advantages: small keys and ciphertext. Disadvantages:

Conservative parameters that makes DAGS slow.

Code at: https://git.dags-project.org/dags/dags

Key generation

▶ Operations in $\mathbb{F}_{2^{12}}$ and in \mathbb{F}_{2^6} ;

Key generation

- ightharpoonup Operations in $\mathbb{F}_{2^{12}}$ and in \mathbb{F}_{2^6} ;
 - Additions are "cheap";
 - Multiplications and inversions are costly; Originally with log and i-log tables
- ▶ Random generation of a polynomial in $\mathbb{F}_{2^{12}}$.

Key generation

- ightharpoonup Operations in $\mathbb{F}_{2^{12}}$ and in \mathbb{F}_{2^6} ;
 - Additions are "cheap";
 - Multiplications and inversions are costly; Originally with log and i-log tables
- ▶ Random generation of a polynomial in $\mathbb{F}_{2^{12}}$.

- ▶ Operations in $\mathbb{F}_{2^{12}}$ and in \mathbb{F}_{2^6} ;
- ▶ Random generation of a polynomial in $\mathbb{F}_{2^{12}}$;
- Hash function "call".

Key generation

- ▶ Operations in $\mathbb{F}_{2^{12}}$ and in \mathbb{F}_{2^6} ;
 - Additions are "cheap":
 - Multiplications and inversions are costly; Originally with log and i-log tables
- ▶ Random generation of a polynomial in $\mathbb{F}_{2^{12}}$.

Encapsulation

- ▶ Operations in $\mathbb{F}_{2^{12}}$ and in \mathbb{F}_{2^6} ;
- ▶ Random generation of a polynomial in $\mathbb{F}_{2^{12}}$;
- ► Hash function "call".

Decapsulation

- ▶ Operations in $\mathbb{F}_{2^{12}}$ and in \mathbb{F}_{2^6} ;
- ▶ Random generation of a polynomial in $\mathbb{F}_{2^{12}}$;
 - Hash function "call".

Key generation

The key generation process uses the following fundamental equation

$$\frac{1}{h_{i\oplus j}} = \frac{1}{h_i} + \frac{1}{h_j} + \frac{1}{h_0}.$$
 (1)

To build the vector $\mathbf{h} = (h_0, \dots, h_{n-1})$ of elements of \mathbb{F}_{q^m} , which is known as *signature* of a dyadic matrix.

Key generation

- 1 Generate dyadic signature h. To do this:
 - i. Choose random non-zero distinct h_0 and h_j for $j = 2^l, l = 0, \dots, \lfloor \log q^m \rfloor$.
 - ii. Form the remaining elements using (1).
 - iii. Return a selection of blocks of dimension s up to length n.
- 2 Build the Cauchy support. To do this:
 - i. Choose a random offset $\omega \stackrel{\$}{\leftarrow} \mathbb{F}_{q^m}$.
 - ii. Set $u_i = 1/h_i + \omega$ and $v_j = 1/h_j + 1/h_0 + \omega$ for $i = 0, \dots, s-1$ and $j = 0, \dots, n-1$.
 - iii. Set $\mathbf{u} = (u_0, \dots, u_{s-1})$ and $\mathbf{v} = (v_0, \dots, v_{n-1})$.

Key generation

- 3 Form Cauchy matrix $\hat{H}_1 = C(\mathbf{u}, \mathbf{v})$.
- 4 Build blocks \hat{H}_i , $i=2,\ldots t$, by raising each element of \hat{H}_1 to the power of i.
- 5 Superimpose blocks to form matrix \hat{H} .
- 6 Choose random elements $z_i \stackrel{\$}{\leftarrow} \mathbb{F}_{q^m}$ such that $z_{is+j} = z_{is}$ for $i = 0, \dots, n_0 1, j = 0, \dots, s 1$.
- 7 Form $H = \hat{H} \cdot \text{Diag}(z)$.
- 8 Transform H into alternant form: call this H'.
- 9 Project H onto \mathbb{F}_q using the co-trace function: call this H_{base} .
- 10 Write H_{base} in systematic form $(M \mid I_{n-k})$.
- 11 The public key is the generator matrix $G = (I_k \mid M^T)$.
- 12 The private key is the alternant matrix H'.

- 1. Choose $\mathbf{m} \leftarrow {}^{\$} \mathbb{F}_q^{k'}$.
- 2. Compute $\mathbf{r} = \mathcal{G}(\mathbf{m})$ and $\mathbf{d} = \mathcal{H}(\mathbf{m})$.
- 3. Parse **r** as $(\rho \parallel \sigma)$ then set $\mu = (\rho \parallel \mathbf{m})$.
- 4. Generate error vector **e** of length n and weight w from σ .
- 5. Compute $\mathbf{c} = \mu G + \mathbf{e}$.
- 6. Compute $\mathbf{k} = \mathcal{K}(\mathbf{m})$.
- 7. Output ciphertext (c, d); the encapsulated key is k.

Decapsulation

- 1. Input private key, i.e. parity-check matrix H' in alternant form.
- 2. Use H' to decode c and obtain codeword $\mu'G$ and error e'.
- 3. Output \perp if decoding fails or $(e') \neq w$
- 4. Recover μ' and parse it as $(\rho' \parallel \mathbf{m}')$.
- 5. Compute $\mathbf{r}' = \mathcal{G}(\mathbf{m}')$ and $\mathbf{d}' = \mathcal{H}(\mathbf{m}')$.
- 6. Parse \mathbf{r}' as $(\boldsymbol{\rho}'' \parallel \boldsymbol{\sigma}')$.
- 7. Generate error vector \mathbf{e}'' of length n and weight w from σ' .
- 8. If $\mathbf{e}' \neq \mathbf{e}'' \lor \rho' \neq \rho'' \lor \mathbf{d} \neq \mathbf{d}'$ output \bot .
- 9. Else compute $\mathbf{k} = \mathcal{K}(\mathbf{m}')$.
- 10. The decapsulated key is \mathbf{k} .

Questions

Thank you for your attention. Questions?

gustavo@cryptme.in epersichetti@fau.edu