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1 Introduction

Code-based cryptography is one of the main candidates for post-quantum cryptog-
raphy standardization. The area is largely based on the Syndrome Decoding Prob-
lem [12], which shows to be strong against quantum attacks. Over the years, since
McEliece’s seminal work [33], many cryptosystems have been proposed, trying to
balance security and efficiency. In particular dealing with inherent flaws such as the
large size of the public keys. In fact, while McEliece’s cryptosystem, which is based
binary Goppa codes, is still unbroken, it features a key of several kilobytes, which
has effectively prevented its use in many applications.

There are currently two main trends to deal with this issue, and they both involve
structured matrices: the first, is based on “traditional” algebraic codes such as Goppa
or Srivastava codes; the second suggests to use sparse matrices as in LDPC/MDPC
codes. This work builds on the former approach, initiated in 2009 by Berger et
al. [11], who proposed Quasi-Cyclic (QC) codes, and Misoczki and Barreto [34],
suggesting Quasi-Dyadic (QD) codes instead (later generalized to Quasi-Monoidic
(QM) codes [10]). Both proposals feature very compact public keys due to the
introduction of the extra algebraic structure, but unfortunately this also leads to a
vulnerability. Indeed, Faugère, Otmani, Perret and Tillich [23] devised a clever attack
(known simply as FOPT) which exploits the algebraic structure to build a system
of equations, which can successively be solved using Gröbner bases techniques. As
a result, the QC proposal is definitely compromised, while the QD/QM approach
needs to be treated with caution. In fact, for a proper choice of parameters, it is
still possible to design secure schemes using for instance binary Goppa codes, or
Generalized Srivastava (GS) codes as suggested by Persichetti in [38].

In this document, we present DAGS, a Key Encapsulation Mechanism (KEM)
that follows the QD approach using GS codes. To the best of our knowledge, this is
the first code-based KEM that uses structured algebraic codes. The KEM achieves
IND-CCA security following the recent framework by Kiltz et al. [29], and features
compact public keys and efficient encapsulation and decapsulation algorithms. We
modulate our parameters to achieve the most efficient scheme, while at the same
time avoiding the FOPT attack.
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2 Notation

This section describes the notation used in this document.

a a constant
a a vector
A a matrix
A an algorithm or (hash) function
A a set

Diag(a) the diagonal matrix formed by the vector a
In the n× n identity matrix
$← choosing a random element from a set or distribution

2.1 Formats and Conventions

DAGS operates on vectors of elements of the finite field Fq, where q is a power of 2
as specified by the choice of parameters.

1. Finite field elements are represented as bit strings using standard log/antilog
tables (see for instance [32, Ch. 4, §5]) which are stored in the memory.

2. Field operations are performed using the log/antilog tables, and implemented
in an isochronous way.

3. Every vector or matrix defined over an extension field Fqm can be projected onto
the base field Fq by replacing each element with the (column) vector formed
by the coefficients of its representation over Fq.

4. We use the hash function SHA3-512 with 256 bits input for the random oracles
G,H and K (see Section 3.1).

3 Full Protocol Specification (2.B.1)

3.1 Design Rationale

In this section we introduce the three algorithms that form DAGS. System param-
eters are the code length n and dimension k, the values s and t which define a GS
code, the cardinality of the base field q and the degree of the field extension m. In
addition, we have k = k′ + k′′, where k′ is arbitrary and is set to be “small”. In
practice, the value of k′ depends on the base field and is such that a vector of length
k′ provides at least 256 bits of entropy.

3



The key generation process uses the following fundamental equation

1

hi⊕j
=

1

hi
+

1

hj
+

1

h0
. (1)

to build the vector h = (h0, . . . , hn−1) of elements of Fqm , which is known as signature
of a dyadic matrix. This is then used to form a Cauchy matrix, i.e. a matrix C(u,v)
with components Cij = 1

ui−vj . The matrix is then successively powered (element by

element) forming several blocks which are superimposed and then multiplied by a
random diagonal matrix. Finally, the resulting matrix is projected onto the base
field and row-reduced to systematic form. The overall process is described below.

3.1.1 Key Generation

1. Generate dyadic signature h. To do this:

i. Choose random non-zero distinct h0 and hj for j = 2l, l = 0, . . . , blog qmc.
ii. Form the remaining elements using (1).

iii. Return a selection1 of blocks of dimension s up to length n.

2. Build the Cauchy support. To do this:

i. Choose a random2 offset ω
$←Fqm .

ii. Compute ui =
1

hi
+ ω for i = 0, . . . , s− 1.

iii. Compute vj =
1

hj
+

1

h0
+ ω for j = 0, . . . , n− 1.

iv. Set u = (u0, . . . , us−1) and v = (v0, . . . , vn−1).

3. Form Cauchy matrix Ĥ1 = C(u,v).

4. Build Ĥi, i = 2, . . . t, by raising each element of Ĥ1 to the power of i.

5. Superimpose blocks Ĥi in ascending order to form matrix Ĥ.

6. Generate vector z by sampling uniformly at random elements in Fqm with the
restriction zis+j = zis for i = 0, . . . , n0 − 1, j = 0, . . . , s− 1.

1Making sure to exclude any block containing an undefined entry.
2See Appendix A for restrictions about the choice of the offset.
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7. Set yj =
zj

s−1∏
i=0

(ui − vj)t
for j = 0, . . . , n− 1 and y = (y0, . . . , yn−1).

8. Form H = Ĥ ·Diag(z).

9. Project H onto Fq using the co-trace function: call this Hbase.

10. Write Hbase in systematic form (M | In−k).

11. The public key is the generator matrix G = (Ik |MT ).

12. The private key is the pair (v,y).

The encapsulation and decapsulation algorithms make use of two hash functions3

G : Fk′q → Fkq and H : Fk′q → Fk′q , the former with the task of generating randomness
for the scheme, the latter to provide “plaintext confirmation” as in [29]. The shared
symmetric key is obtained via another hash function K : {0, 1}∗ → {0, 1}`, where `
is the desired key length.

3.1.2 Encapsulation

1. Choose m
$←Fk′q .

2. Compute r = G(m) and d = H(m).

3. Parse r as (ρ ‖ σ) then set µ = (ρ ‖m).

4. Generate error vector e of length n and weight w from σ.

5. Compute c = µG+ e.

6. Compute k = K(m).

7. Output ciphertext (c,d); the encapsulated key is k.

The decapsulation algorithm consists mainly of decoding the noisy codeword
received as part of the ciphertext. This is done using the alternant decoding algorithm
described in [32, Ch. 12, §9] and requires the parity-check matrix to be in alternant
form.

3As specified in Section 2.1
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3.1.3 Decapsulation

1. Get parity-check matrix H ′ in alternant form from private key4.

2. Use H ′ to decode c and obtain codeword µ′G and error e′.

3. Output ⊥ if decoding fails or wt(e′) 6= w

4. Recover µ′ and parse it as (ρ′ ‖m′).

5. Compute r′ = G(m′) and d′ = H(m′).

6. Parse r′ as (ρ′′ ‖ σ′).

7. Generate error vector e′′ of length n and weight w from σ′.

8. If e′ 6= e′′ ∨ ρ′ 6= ρ′′ ∨ d 6= d′ output ⊥.

9. Else compute k = K(m′).

10. The decapsulated key is k.

DAGS is built upon the McEliece encryption framework, with a notable exception.
In fact, we incorporate the “randomized” version of McEliece by Nojima et al. [37]
into our scheme. This is extremely beneficial for two distinct aspects: first of all, it
allows us to use a much shorter vector m to generate the remaining components of
the scheme, greatly improving efficiency. Secondly, it allows us to get tighter security
bounds. In fact, a shorter input makes all the hash functions easy to compute, and
minimizes the overhead due to the IND-CCA2 security in the QROM. Note that our
protocol differs slightly from the paradigm presented in [29], in the fact that we don’t
perform a full re-encryption in the decapsulation algorithm. Instead, we simply re-
generate the randomness and compare it with the one obtained after decoding. This
is possible since, unlike a generic PKE, McEliece decryption reveals the randomness
used, in our case e (and ρ). It is clear that if the re-generated randomness is equal
to the retrieved one, the resulting encryption will also be equal. This allows us to
further decrease computation time.

4See Algorithm 6.3.1.
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4 Security (2.B.4)

In this section, we discuss some aspects of provable security, and in particular we show
that DAGS satisfies the notion of IND-CCA security for KEMs. Before discussing
the IND-CCA security of DAGS, we show that the underlying PKE (i.e. Randomized
McEliece) satisfies the γ-spread property. This will allow us to get better security
bounds in our reduction.

Definition 1 Consider a probabilistic PKE with randomness set R. We say that
PKE is γ-spread if for a given key pair (sk, pk), a plaintext m and an element y in
the ciphertext domain, we have

Pr[r
$←R | y = Encpk(m, r)] ≤ 2−γ,

for a certain γ ∈ R.

The definition above is presented as in [29], but note that in fact this corresponds
to the notion of γ-uniformity given by Fujisaki and Okamoto in [26], except for a
change of constants. In other words, a scheme is γ-spread if it is 2−γ-uniform.

It was proved in [19] that a simple variant of the (classic) McEliece PKE is
γ-uniform for γ = 2−k, where k is the code dimension as usual (more in general,
γ = q−k for a cryptosystem defined over Fq). We can extend this result to our
scheme as follows.

Lemma 1 Randomized McEliece is γ-uniform for γ =
q−k

′′(
n
w

) .

Proof Let y be a generic vector of Fnq . Then either y is a word at distance w from
the code, or it isn’t. If it isn’t, the probability of y being a valid ciphertext is clearly
exactly 0. On the other hand, suppose y is at distance w from the code; then there
is only one choice of ρ and one choice of e that satisfy the equation (since w is
below the GV bound), i.e. the probability of y being a valid ciphertext is exactly
1/qk

′′ · 1/
(
n
w

)
, which concludes the proof. �

We are now ready to present the security results.

Theorem 1 Let A be an IND-CCA adversary against DAGS that makes at most
qRO = qG + qK total random oracle queries5 and qD decryption queries. Then there
exists an IND-CPA adversary B against PKE, running in approximately the same
time as A, such that

AdvIND−CCAKEM (A) ≤ qRO · 2−γ + 3 · AdvIND−CPAPKE (B).
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Proof The thesis is a consequence of the results presented in Section 3.3 of [29]. In
fact, our scheme follows the KEM⊥m framework that consists of applying two generic
transformations to a public-key encryption scheme. The first step consists of trans-
forming the IND-CPA encryption scheme into a OW-PCVA (i.e. Plaintext and Va-
lidity Checking) scheme. Then, the resulting scheme is transformed into a KEM in a
“standard” way. Both proofs are obtained via a sequence of games, and the combina-
tion of them shows that breaking IND-CCA security of the KEM would lead to break
the IND-CPA security of the underlying encryption scheme. Note that Randomized
McEliece, instantiated with Quasi-Dyadic GS codes, presents no correctness error
(the value δ in [29]), which greatly simplifies the resulting bound. �

The value d included in the KEM ciphertext does not contribute to the security
result above, but it is a crucial factor to provide security in the Quantum Random
Oracle Model (QROM). We present this in the next theorem.

Theorem 2 Let A be a quantum IND-CCA adversary against DAGS that makes
at most qRO = qG + qK total quantum random oracle queries6 and qD (classical)
decryption queries. Then there exists a OW-CPA adversary B against PKE, running
in approximately the same time as A, such that

AdvIND−CCAKEM (A) ≤ 8qRO ·
√
qRO ·

√
AdvOW−CPAPKE (B).

Proof The thesis is a consequence of the results presented in Section 4.4 of [29].
In fact, our scheme follows the QKEM⊥m framework that consists of applying two
generic transformations to a public-key encryption scheme. The first step transform-
ing the IND-CPA encryption scheme into a OW-PCVA (i.e. Plaintext and Validity
Checking) scheme, is the same as in the previous case. Now, the resulting scheme is
transformed into a KEM with techniques suitable for the QROM. The combination
of the two proofs shows that breaking IND-CCA security of the KEM would lead to
break the OW-CPA security of the underlying encryption scheme. Note, therefore,
that the IND-CPA security of the underlying PKE has in this case no further effect
on the final result, and can be considered instead just a guarantee that the scheme
is indeed OW-CPA secure. The bound obtained is a “simplified” and “concrete”
version (as presented by the authors) and, in particular, it is easy to notice that it
does not depend on the number of queries qH presented to the random oracle H.
The bound is further simplified since, as above, the underlying PKE presents no
correctness error. �

5Respectively qG queries to the random oracle G and qK queries to the random oracle K.
6Same as in Theorem 1.
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5 Known Attacks and Parameters (2.B.5/2.B.1)

We start by briefly presenting the hard problem on which DAGS is based, and then
discuss the main attacks on the scheme and related security concerns.

5.1 Hard Problems from Coding Theory

Most of the code-based cryptographic constructions are based on the hardness of the
following problem, known as the (q-ary) Syndrome Decoding Problem (SDP).

Problem 1 Given an (n − k) × n full-rank matrix H over Fq, a vector s ∈ Fn−kq ,
and a non-negative integer w, find a vector e ∈ Fnq of weight w such that HeT = s.

The corresponding decision problem was proved to be NP-complete in 1978 [12],
but only for binary codes. In 1994, A. Barg proved that this result holds for codes
over all finite fields ([7], in Russian, and [8, Theorem 4.1]).

In addition, many schemes (including the original McEliece proposal) require the
following computational assumption.

Assumption 1 The public matrix output by the key generation algorithm is compu-
tationally indistinguishable from a uniformly chosen matrix of the same size.

The assumption above is historically believed to be true, except for very partic-
ular cases. For instance, there exists a distinguisher (Faugère et al. [22]) for crypto-
graphic protocols that make use of high-rate Goppa codes (like the CFS signature
scheme [20]). Moreover, it is worth mentioning that the “classical” methods for ob-
taining an indistinguishable public matrix, such as the use of scrambling matrices S
and P , are rather outdated and unpractical and can introduce vulnerabilities to the
scheme as per the work of Strenzke et al. ([42, 43]). Thus, traditionally, the safest
method (Biswas and Sendrier, [16]) to obtain the public matrix is simply to compute
the systematic form of the private matrix.

5.2 Decoding Attacks

The main approach for solving SDP is the technique known as Information Set
Decoding (ISD), first introduced by Prange [41]. Among several variants and gen-
eralizations, Peters showed [40] that it is possible to apply Prange’s approach to
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generic q-ary codes. Other approaches such as Statistical Decoding [30, 35] are usu-
ally considered less efficient. Thus, when choosing parameters, we will focus mainly
on defeating attacks of the ISD family.

Hamdaoui and Sendrier in [28] provide non-asymptotic complexity estimates for
ISD in the binary case. For codes over Fq, instead, a bound is given in [36], which
extends the work of Peters. For a practical evaluation of the ISD running times and
corresponding security level, we used Peters’s ISDFQ script[1].

Quantum Speedup. Bernstein in [13] shows that Grover’s algorithm applies to
ISD-like algorithms, effectively halving the asymptotic exponent in the complexity
estimates. Later, it was proven in [31] that several variants of ISD have the potential
to achieve a better exponent, however the improvement was disappointingly away
from the factor of 2 that could be expected. For this reason, we simply treat the
best quantum attack on our scheme to be “traditional” ISD (Prange) combined with
Grover search.

5.3 Algebraic Attacks

While, as we discussed above, recovering a private matrix from a public one can
be in general a very difficult problem, the presence of extra structure in the code
properties can have a considerable effect in lowering this difficulty.

A very effective structural attack was introduced by Faugère, Otmani, Perret and
Tillich in [23]. The attack (for convenience simply called FOPT) relies on the prop-
erty H ·GT = 0 to build an algebraic system, using then Gröbner bases techniques to
solve it and recover the private key. Note that this property is valid for every linear
code, but it is the special properties of structured alternant codes that make the
system solvable, as they contribute to considerably reduce the number of variables.

The attack was originally aimed at two variants of McEliece, introduced respec-
tively in [11] and [34]. The first variant, using quasi-cyclic codes, was easily broken in
all proposed parameters. The second variant, instead, only considered quasi-dyadic
Goppa codes. In this case, most of the parameters proposed have also been broken,
except for the binary case (i.e. base field F2). This was, in truth, not connected
to the base field per se, but rather depended on the fact that, with a smaller base
field, the authors provided a much higher extension degree m, as they were keeping
constant the value qm = 216. As it turns out, the extension degree m plays a key
role in evaluating the complexity of the attack.
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5.3.1 Attack Complexity

Following up on their own work, the authors in [24] analyze the attack in detail
with the aim of evaluating its complexity at least somewhat rigorously. At the core
of the attack, there is an affine bi-linear system, which is derived from the initial
system of equations by applying various algebraic relations due to the quasi-dyadic
structure. This bi-linear system has nX′ +nY ′ variables, where these are, respectively,
the number of X and Y “free” variables (after applying the relations) of an alternant
parity-check matrix H with Hij = YjX

i
j. Moreover, the degree of regularity (i.e. the

maximal degree of the polynomials appearing during the computation) is bounded
above by 1 + min{nX′ , nY ′}. It is shown that this number dominates computation
time, and so it is crucial to correctly evaluate it in our case. In fact, for the original
proposal based on Goppa codes [34], we have nX′ = n0 − 2 + log2(`), where ` is the
dyadic order and n0 = n/` is the number of dyadic blocks, and nY ′ = m − 1. We
report an excerpt of some numbers from the paper in Table 1 below.

Table 1: Details of FOPT applied to Quasi-Dyadic Goppa codes [24].

q m n k n0 ` nX′ nY ′ Time/Operations

2 16 3584 1536 56 26 60 15 N/A
22 8 3584 1536 56 26 60 7 1,776.3 sec / 234.2 op
24 4 2048 1024 32 26 36 3 0.5 sec / 222.1 op
28 2 1280 768 20 26 24 1 0.03 sec / 216.7 op
28 2 640 512 10 26 14 1 0.03 sec / 215.9 op
28 2 768 512 6 27 11 1 0.02 sec / 215.4 op
28 2 1024 512 4 28 10 1 0.11 sec / 219.2 op
28 2 512 256 4 27 9 1 0.06 sec / 217.7 op
28 2 640 384 5 27 10 1 0.02 sec / 214.5 op
28 2 768 512 6 27 11 1 0.01 sec / 216.6 op
28 2 1280 768 5 28 11 1 0.05 sec / 217.5 op
28 2 1536 1024 6 28 12 1 0.06 sec / 217.8 op
24 4 4096 3584 32 27 37 3 7.1 sec / 226.1 op
28 2 3072 2048 6 29 13 1 0.15 sec / 219.7 op

It is possible to observe several facts. For instance, in every set of parameters,
nX′ >> nY ′ and so nY ′ = m − 1 is the most important number here. In other
words, the degree of the extension field is crucial in evaluating the complexity of
the attack, as we mentioned above. As a confirmation, it is easy to notice that all
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parameters were broken very easily when this is extremely small (1 in most cases),
while the running time scales accordingly when m grows. In fact, the attack couldn’t
be performed in practice on the first set of parameters (hence the N/A).

The first three groups of parameters are taken from, respectively, Table 2, Table
3 and Table 5 of the preliminary (unpublished) version of [34], while the last group
consists of some ad hoc parameters generated by the FOPT authors. It stands out
the absence of parameters from Table 4 of [34]: in fact, all of these parameters
used F2 as based field and thus couldn’t be broken (at least not without very long
computations), just like for the case of the first set. As a result, an updated version
of [34] was produced for publication, in which the insecure parameters are removed
and only the binary sets (those of Table 4) appear.

Towards the end of [24], the authors present a bound on the theoretical complexity
of computing a Gröbner base of the affine bi-linear system which is at the core of the
attack. They then evaluate this bound and compare it with the number of operations
required in practice (last column of Table 1). The bound is given by

Ttheo ≈

( ∑
d1+d2=D

1≤d1,d2≤D−1

(
dimRd1,d2 − [td11 t

d2
2 ]HS(t1, t2)

)
dimRd1,d2

)
(2)

where D is the degree of regularity of the system, dimRd1,d2 =
(
d1+nX′
d1

)(
d2+nX′
d2

)
and [td11 t

d2
2 ]HS(t1, t2) indicates the coefficient of the term [td11 t

d2
2 ] in the Hilbert bi-

series HS(t1, t2), as defined in Appendix A of [24].

As it turns out this bound is quite loose, being sometimes above and sometimes
below the experimental results, depending on which set of parameters is considered.
As such, it is to be read as a grossly approximate indication of the expected com-
plexity of a parameter set, and it only allows to have a rough idea of the security
provided for each set. Nevertheless, since are able to compute the bound for all DAGS
proposed parameters, we will keep this number in mind when proposing parameters
(Section 5.4), to make sure our choices are at least not obviously insecure.

As a bottomline, it is clear that the complexity of the attack scales somewhat
proportionally to the value m− 1 which defines the dimension of the solution space.
The FOPT authors point out that any scheme for which this dimension is less or
equal to 20 should be within the scope of the attack.
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Since GS codes are also alternant codes, the attack can be applied to our proposal
as well. There is, however, one very important difference to keep in mind. In fact, it
is shown in [38] that, thanks to the particular structure of GS codes, the dimension
of the solution space is defined by mt− 1, rather than m− 1. This provides greater
flexibility when designing parameters for the code, and it allows, in particular, to
“rest the weight” of the attack on two shoulders rather than just one. Thus we
are able to modulate the parameters and keep the extension degree m small while
still achieving a large dimension for the solution space. We will discuss parameter
selection in detail in Section 5.4 as already mentioned.

5.3.2 Folded Codes

Recently, an extension of the FOPT attack appeared in [25]. The authors introduce a
new technique called “folding”, and show that it is possible to reduce the complexity
of the FOPT attack to the complexity of attacking a smaller code (the “folded”
code), thanks to the strong properties of the automorphism group of the alternant
codes in use. The attack turns out to be very efficient against Goppa codes, as it is
possible to recover a folded code which is also a Goppa code. As a consequence, it
is possible to tweak the attack to solve a different, augmented system of equations
(named GX,Y ′), rather than the “basic” one which is aimed at generic alternant codes
(called AX,Y ′). Moreover, this can be further refined in the case of binary Goppa
codes, leading to a third system of equations referred to as McEX,Y ′ . In parallel,
the authors present a new method called “structural elimination” that manages to
eliminate a considerable number of variables, at the price of an increased degree
in the equations considered. Solving the “eliminated” systems (called respectively
elimAX′,Y ′ , elimGX′,Y ′ and elimMcEX′,Y ′) often proves a more efficient choice, but the
authors do occasionally use the non-eliminated systems when it is more convenient
to do so.

The paper concentrates on attacking several parameters that were proposed for
signature schemes and encryption schemes in various follow-ups of [11] and [34]. The
latter includes, among others, some of the parameters presented in Table 1. While
codes designed to work for signature schemes turn out to be very easy to attack
(due to their particular nature), the situation for encryption is more complex. The
authors are able to obtain a speedup in the attack times for previously investigated
parameters, but some of the parameters could still not be solved in practice. We
report the results below, where we indicate the type of system chosen to be solved,
and we keep some of the previously-shown parameters for ease of comparison.
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Table 2: Details of Folding attack applied to Quasi-Dyadic Goppa codes [25].

q m n k n0 ` System Folding FOPT

24 4 2048 1024 32 26 elimAX′,Y ′ 0.01 sec 0.5 sec
24 4 4096 3584 32 27 elimAX′,Y ′ 0.01 sec 7.1 sec
22 8 3584 1536 56 26 elimAX′,Y ′ 0.04 sec 1,776.3 sec
2 16 4864 4352 152 25 elimMcEX′,Y ′ 18 sec N/A
2 12 3200 1664 25 27 elimMcEX′,Y ′ ≤ 283.5 op N/A
2 14 5376 3584 42 27 elimMcEX′,Y ′ ≤ 296.1 op N/A
2 15 11264 3584 22 29 elimMcEX′,Y ′ ≤ 2146 op N/A
2 16 6912 2816 27 28 elimMcEX′,Y ′ ≤ 2168 op N/A
2 16 8192 4096 32 28 elimMcEX′,Y ′ ≤ 2157 op N/A

The authors don’t report timings for codes that were already broken with FOPT
in negligible time (like all of those where m = 2). Also, we’ve excluded from our
table parameters that are not relevant to this submission, such as the quasi-monoidic
codes of [10] (where q is not a power of 2).

This table confirms our intuition that high values of m result in a high number
of operations, and that complexity increases somewhat proportionally to this value.
Note that the last 5 sets of parameters were not broken in practice and the estimated
complexity is always quite high: it is not clear what the authors mean by ≤, but it
is reasonable to assume that the actual complexity wouldn’t be dramatically smaller
than the indicated value, and thus at least 280 in all cases. Consequently, the claim
that parameters with m − 1 ≤ 20 are “within the scope of the attack” looks now
perhaps a bit optimistic.

The fourth set of parameters seem to contradict our intuition, since it was broken
in practice with relative ease even though m = 16. However, it is possible to see
that this is a code with a ridiculously high rate (k/n is very close to 1) and in
particular, the very large number of blocks n0 clearly stands out. We remark that
this set of parameters was chosen ad hoc by the attack authors and in practice such
a poor choice of parameters would never be considered. Nevertheless, it gives us the
confirmation (if needed) that high-rate codes are a bad choice not only for ISD-like
attacks, but for structural attacks also.

The authors didn’t present any explicit result against GS codes and, in particular,
it is not known whether a folded GS code is still a GS code. Thus, the attack in this
case is limited to solving the generic system AX,Y ′ (or elimAX′,Y ′) and doesn’t benefit
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from the speedups which are specific to (binary) Goppa codes. For these reasons, and
until an accurate complexity analysis is available, we choose to attain to the latest
measurable guidelines and choose our parameters such that the dimension of the
solution space for the algebraic system is strictly greater than 20. We then compute
the bound given by Equation (2) and report it as an additional indication of the
expected complexity of the attack. We hope that this work will encourage further
study into FOPT and folding attacks in relation to GS codes.

5.3.3 Norm-Trace Codes

An attack based on Norm-Trace Codes has been recently introduced by Barelli and
Couvreur [6]. As the name suggests, these codes are the result of the application of
both the Trace and the Norm operation to a certain support vector, and they are
alternant codes. In particular, they are subfield subcodes of Reed-Solomon codes.
The construction of these codes is given explicitly only for the specific case m = 2
(as will be the case in all DAGS parameters), i.e. the support vector has components
in Fq2 , in which case the norm-trace code is defined as

NT (x) = 〈1, T r(x), T r(αx), N(x)〉

where α is an element of trace 1.

The main idea of the attack is that there exists a specific norm-trace code that
is the conductor of the secret subcode into the public code. By “conductor” the
authors refer to the largest code for which the Schur product is entirely contained in
the target, i.e.

Cond(D, C) = {u ∈ Fnq : u ?D ⊆ C}

where ? denotes the Schur product (component-wise product of all codewords).

The authors present two strategies to determine the secret subcode. The first
strategy is essentially an exhaustive search over all the codes of the proper co-
dimension. This co-dimension is given by 2q/s, since s is the size of the permutation
group of the code, which is non-trivial in our case due to the code being quasi-dyadic.
While such a brute force in principle would be too expensive, the authors present a
few refinements that make it feasible, which include an observation on the code rate
of the codes in use, and the use of shortened codes.
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The second strategy, instead, consists of solving a bilinear system, which is ob-
tained using the parity-check matrix of the public code and treating as unknowns the
elements of a generator matrix for the secret code (as well as the support vector x).
This system is solved using Gröbner bases techniques, and benefits from a reduction
in the number of variables similar to the one performed in FOPT, as well as the
refinements mentioned above (shortened codes).

In any case, it is easy to deduce that the two parameters q and s are crucial in
determining the cost of running this step of the attack, which dominates the overall
cost. In fact, the authors are able to provide an accurate complexity analysis for
the first strategy which confirms this intuition. The average number of iterations of
the brute force search is given by q2c, where c is exactly the co-dimension described
above, i.e. c = 2q/s. In addition, it is shown that the cost of computing Schur
products is 2n3 operations in the base field. Thus, the overall cost of the recovery
step is 2n3q4q/s operations in Fq. The authors then argue that wrapping up the
attack has negligible cost, and that q-ary operations can be done in constant time
(using tables) when q is not too big. All this leads to a complexity which is below
the desired security level for all of the DAGS parameters that had been proposed at
the time of submission. We report these numbers below.

Table 3: Early DAGS Parameters.

Security Level7 q m n k k′ s t w Attack

1 25 2 832 416 43 24 13 104 270

3 26 2 1216 512 43 25 11 176 280

5 26 2 2112 704 43 26 11 352 255

As it is possible to observe, the attack complexity is especially low for the last
set of parameters since the dyadic order s was chosen to be 26, and this is probably
too much to provide security against this attack. Still, we point out that, at the
time this parameters were proposed, there was no indication this was the case, since
this attack is using an entirely new technique, and it is unrelated to the FOPT and
folding attacks that we just described.

Unfortunately, the attack authors were not able to provide a security analysis
for the second strategy (bilinear system). This is due to the fact that the attack
uses Gröbner based techniques, and it is very hard to evaluate the cost in this case
(similarly to what happened for FOPT). In this case then, the only evidence the

7Claimed.
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authors provide is experimental, and based on running the attack in practice on
all the parameters. The authors report running times around 15 minutes for the
first set and less than a minute for the last, while they admit they weren’t able
to complete the execution in the middle case. This seems to match the evidence
from the complexity results obtained for the first strategy, and suggests a speedup
proportional to those. Further test runs are currently planned, but the fact that the
attack already fails to run in practice for the middle set, gives us some confidence to
believe that updated parameters will definitely make the attack infeasible.

5.4 Parameter Selection

To choose our parameters, we keep in mind all the remarks from the previous sections
about decoding attacks and structural attacks. As we have just seen, we need to
respect the condition mt ≥ 21 to guarantee security against FOPT. At the same
time, to prevent the BC attack q has to be chosen large enough and s can’t be
too big. Finally, for ISD to be computationally intensive we require a sufficiently
large number w of errors to decode: this is given by st/2 according to the minimum
distance of GS codes.

In addition, we tune our parameters to optimize performance. In this regard,
the best results are obtained when the extension degree m is as small as possible.
This, however, requires the base field to be large enough to accommodate sufficiently
big codes (against ISD attacks), since the maximum size for the code length n is
capped by qm − s. Realistically, this means we want qm to be at least 212, and the
optimal choice in this sense seems to be q = 28 (see Section 6). Finally, note that
s is constrained to be a power of 2, and that odd values of t seem to offer best
performance.

Putting all the pieces together, we are able to present three set of parameters, in
the following table. These correspond to three of the security levels indicated by NIST
(first column), which are related to the hardness of performing a key search attack on
three different variants of a block cipher, such as AES (with key-length respectively
128, 192 and 256). As far as quantum attacks are concerned, we claim that ISD
with Grover (see above) will usually require more resources than a Grover search
attack on AES for the circuit depths suggested by NIST (parameter MAXDEPTH).
Thus, classical security bits are the bottleneck in our case, and as such we choose our
parameters to provide 128, 192 and 256 bits of classical security for security levels 1,
3 and 5 respectively.
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Table 4: Suggested DAGS Parameters.

Security Level q m n k k′ s t w nY ′ BC

1 26 2 832 416 43 24 13 104 25 2126

3 28 2 1216 512 32 25 11 176 21 2288

5 28 2 1600 896 32 25 11 176 21 2289

For practical reasons, during the rest of the paper we will refer to these parameters
respectively as DAGS 1, DAGS 3 and DAGS 5.

For the above parameters, it is easy to observe that the value nY ′ is always
greater or equal to 21 (it is in fact 25 for DAGS 1), which keeps us clear of FOPT.
With respect to the BC attack, the complexity analysis provided by the authors
results in a value of ≈ 2126 for DAGS 1 and more than 2288 for the other two sets.
Finally, the running cost of ISD (using Peters’ script) is estimated at 2128, 2192 and
2256 respectively, as desired.

6 Implementation and Performance Analysis (2.B.2)

6.1 Components

For DAGS 1, the finite field F26 is built using the polynomial x6 + x + 1 and then
extended to F212 using the quadratic irreducible polynomial x2 +αx+α, where α is a
primitive element of F26 . In particular, using a well-known result on finite fields, we
choose α = γ65 where γ is a primitive element of F212 . This particular choice allows
for more efficient arithmetic using a conversion matrix to switch between different
field representations. Similarly, for DAGS 3 and DAGS 5, we build the base field
using x8 +x4 +x3 +x2 + 1 and the extension field F216 is obtained via x2 +β50x+β,
where β is a primitive element of F28 .

The three main functions from DAGS are defined as:

Key generation: the key generation algorithm key gen is composed by three main
functions: binary quasi dyadique sig, cauchy support and key pair. The first two
first functions are in charge of generating the signature and the Cauchy matrix
respectively. The key pair function generates public key and private key which is
stored in memory for a better performance.
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Encapsulation: the encapsulation algorithm is essentially composed of the function
encapsulation in the file encapsulation.c, where it computes the expansion of the
message and the McEliece-like encryption. In the end, the function computes the
hash function K to get the shared secret.

Decapsulation: the decapsulation algorithm consists mainly of the function decap-
sulation in the file decapsulation.c, where we essentially run the decoding algorithm
plus a few comparisons. In the end, we compute the hash function K to get the
shared secret.

6.2 Randomness Generation

The randomness used in our implementation is provided by the NIST api. It uses AES
as a PRNG, where NIST chooses the seed in order to have a controlled environment
for tests. We use this random generator to obtain our input message m, after
which we calculate G(m) and H(m), where G is an expansion function and H is
a compression function. In practice, we compute both using the KangarooTwelve
function [15] from the Keccak family. To generate a low-weight error vector, we
take part of G(m) as a seed σ. We use again KangarooTwelve to expand the seed
into a string of length n, then transform the latter into a fixed-weight string using a
deterministic function.

6.3 Efficient Private Key Reconstruction and Decoding

As mentioned in Section 3.1, in our scheme we use a standard alternant decoder
(Step 2 of Algorithm 3.1.3), which requires the input to be a matrix in alternant
form, i.e. H ′ij = yjx

i
j for i = 0, . . . , st − 1 and j = 0, . . . , n − 1. The first step

consists of computing the syndrome of the received word, H ′cT . Now, defining
the whole alternant matrix H ′ as private key would require storing stn elements
of Fqm , leading to huge key sizes. It would be possible to store as private key
just the defining vectors u,v and z, and then compute the alternant form during
decapsulation. Doing so would drastically reduce the private key size, but would
also significantly slow down the decapsulation algorithm. Thus we implemented the
following hybrid approach. We use u,v and z to compute the vector y during key
generation and store (v,y) as private key, which still results in a compact size. Then,
we complete the computation of the alternant form in the decapsulation algorithm.
To avoid an unnecessary overhead, we incorporate this computation together with
the syndrome computation. The process is detailed as follows.
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6.3.1 Alternant-Syndrome Computation

1. Input received word c to be decoded.

2. Compute the vector s = Diag(y) · cT .

3. Form intermediate matrix H̃. To do this:

(a) Set first row equal to s.

(b) Obtain row i, for i = 1, . . . , st− 1, by multiplying the j-th element of row
i− 1 by vj, for j = 0, . . . , n− 1.

4. Sum elements in each row and output resulting vector.

6.4 Time and Space Requirements

The implementation is in ANSI C, as requested for a generic, reference implementa-
tion. For the measurements we used a processor x64 Intel core i5-5300U@2.30GHz
with 16GiB of RAM compiled with GCC version 6.3.020170516 without any opti-
mization and running on Debian 9.2.

We start by considering space requirements. In Table 5 we recall the flow between
two parties P1 and P2 in a standard Key Exchange protocol derived from a KEM.

Table 5: KEM-based Key Exchange flow

P1 P2

(pk, sk)← KEM.KeyGen
pk−−−−−−−−−−−−→

(k, c)← KEM.Encaps(pk)
c←−−−−−−−−−−−−

k/⊥ ← KEM.Decaps(c, sk)

Shared Key := k

When instantiated with DAGS, the public key is given by the generator matrix
G. The non-identity block MT is k× (n−k) = k×mst and is dyadic of order s, thus
requires only kmst/s = kmt elements of the base field for storage. The private key
is simply the pair (v,y), consisting of 2n elements of Fqm . Finally, the ciphertext is
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the pair (c,d), that is, a q-ary vector of length n plus 256 bits. This leads to the
following measurements (in bytes).

Table 6: Memory Requirements.

Parameter Set Public Key Private Key Ciphertext

DAGS 1 8112 2496 656

DAGS 3 11264 4864 1248

DAGS 5 19712 6400 1632

Table 7: Communication Bandwidth.

Message
Flow

Transmitted
Message

Size

DAGS 1 DAGS 3 DAGS 5

P1 → P2 G 8112 11264 19712

P2 → P1 (c,d) 656 1248 1632

Note that in our reference code, which is not optimized, we currently allocate a
full byte for each element of F26 and two bytes for each element of F212 thus effec-
tively wasting some memory. However, we expect to be able to represent elements
more efficiently, namely using three bytes to store either four elements of F26 or two
elements of F212 . The measurements in Tables 6 and 7, above, are taken with respect
to the latter method. This is not a problem for DAGS 3 and DAGS 5, obviously.

We now move on to analyzing time measurements. We are using x64 architecture
and our measurements use an assembly instruction to get the time counter. We do
this by calling “rdtsc” before and after the instruction, which gives us the cycles used
by each function. Table 8 gives the results of our measurements represented by the
mean after running the code 50 times.

Note About Implementations. Our reference implementation and code have
been compiled for DAGS 5. However, it is possible to adapt both to run with any set
of parameters simply by calling the Makefile with the parameters: DAGS 1, DAGS 3
or DAGS 5.
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Table 8: Timings.

Algorithm
Cycles

DAGS 1 DAGS 3 DAGS 5

Key Generation 2,540,311,986 4,320,206,006 7,371,897,084

Encapsulation 12,108,373 26,048,972 96,929,832

Decapsulation 215,710,551 463,849,016 1,150,831,538

We would like to remark that our reference implementation is designed for clarity,
rather than performance. However, we found that, as a consequence of NIST’s
platform and language of choice, there wouldn’t be many significant performance
differences by presenting an optimized version of our reference code. Thus, our
Optimized Implementation is the same as the Reference Implementation, and all the
measurements presented in this section refer to the reference code.

Our team is currently at work to complete additional implementations that could
better showcase the potential of DAGS in terms of performance. These include code
prepared with x86 assembly instructions (AVX) as well as a hardware implementa-
tion (FPGA) etc. We plan to include such additional implementations in time for
the second evaluation period. A hint at the effectiveness of DAGS can be had by
looking at the performance of the scheme presented in [19], which also features an
implementation for embedded devices. In particular, we expect DAGS to perform
especially well in hardware, due to the nature of the computations of the McEliece
framework.

7 Advantages and Limitations (2.B.6)

We presented DAGS, a Key Encapsulation Mechanism based on Quasi-Dyadic Gen-
eralized Srivastava codes. We proved that DAGS is IND-CCA secure in the Random
Oracle Model, and in the Quantum Random Oracle Model. Thanks to this feature,
it is possible to employ DAGS not only as a key-exchange protocol (for which IND-
CPA would be a sufficient requirement), but also in other contexts such as Hybrid
Encryption, where IND-CCA is of paramount importance.

Like any scheme based on structured algebraic codes, DAGS is susceptible to
algebraic attacks (FOPT etc.); this can be seen as a limitation of the scheme. In

22



fact, to defeat the attacks, we need to respect stringent conditions on the minimal
choices of values for the scheme, in particular the size of the fields in use (both the
base field q and the extension degree m) and the values t and s. We remark that in
many cases an accurate complexity analysis of the attack is not available. This forces
us to choose conservative parameters, and this can also been seen as a disadvantage
of the scheme.

Nevertheless, DAGS is competitive and compares well with other other code-
based schemes. These include the classic McEliece approach [4], as well as more
recent proposals such as BIKE [3] and BIG QUAKE [2]. The “Classic McEliece”
project is an evolution of the well-known McBits [14](based on the work of Per-
sichetti [39]), and benefits from a well-understood security assessment but suffers
from the usual public key size issue. BIG QUAKE continues the line of work of [11],
and proposes to use quasi-cyclic Goppa codes. Due to the particular nature of the
algebraic attacks, it seems harder to provide security with this approach, and the
protocol has to use very large parameters in order to do so. Finally, BIKE, a protocol
based on QC-MDPC codes, is the result of a merge between two independently pub-
lished works with similar background, namely CAKE [9] and Ouroboros [21]. The
scheme possesses some very nice features like compact keys and an easy implementa-
tion approach, but has currently some potential drawbacks. In fact, the QC-MDPC
encryption scheme on which it is based is susceptible to a reaction attack by Guo,
Johansson and Stankovski (GJS) [27], and thus the protocol is forced to employ
ephemeral keys. Moreover, due to its non-trivial Decoding Failure Rate (DFR),
achieving IND-CCA security is currently infeasible, so that the BIKE protocol only
claims to be IND-CPA secure.

Indeed, another advantage of our proposal is that it doesn’t involve any decoding
error. This is particularly favorable in a comparison with some lattice-based schemes
like [18], [5] and [17], as well as BIKE. No decoding error allows for a simpler formu-
lation and better security bounds in the IND-CCA security proof.

Our public key size is considerably smaller than Classic McEliece and BIG QUAKE,
and similar to that of BIKE. With regards to the latter, we point out that while,
for the same security level, DAGS public keys are indeed bigger, our ciphertexts are
a lot smaller. This is because DAGS uses much shorter codes than BIKE, and the
size of ciphertexts is a direct consequence of this fact. Thus, in the end, the total
communication bandwidth is of the same order of magnitude.
All the objects involved in the scheme are vectors of finite fields elements, which in
turn are represented as binary strings; thus computations are very fast. The cost
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of computing the hash functions is minimized thanks to the parameter choice that
makes sure the input m is only 256 bits. As a result, we expect that it will be
possible to implement our scheme efficiently on multiple platforms.

Finally, we would like to highlight that a DAGS-based Key Exchange features
an “asymmetric” structure, where the bandwidth cost and computational effort of
the two parties are considerably different. In particular, in the flow described in
Table 5, the party P2 benefits from a much smaller message and faster computa-
tion (the encapsulation operation), whereas P1 has to perform a key generation and
a decapsulation (which includes a run of the decoding algorithm), and transmit a
larger message (the public matrix). This is suitable for traditional client-server ap-
plications where the server side is usually expected to respond to a large number of
requests and thus benefits from a lighter computational load. On the other hand,
it is easy to imagine an instantiation, with reversed roles, which could be suitable
for example in Internet-of-Things (IoT) applications, where it would be beneficial to
lesser the burden on the client side, due to its typical processing, memory and energy
constraints.

All in all, our scheme offers great flexibility in key exchange applications, which
is not the case for traditional key exchange protocols like Diffie-Hellman.
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A Note on the Choice of ω

As discussed in Section 6.3, in our scheme we use a standard alternant decoder. After
computing the syndrome of the word to be decoded, the next step is to recover the
error locator polynomial σ(x), by means of the euclidean algorithm for polynomial
division; the algorithm then proceeds by finding the roots of σ. There is a 1-1
correspondence between these roots and the error positions: in fact, there is an error
in position i if and only if σ(1/xi) = 0. Of course, if one of the xi’s is equal to 0, it
is not possible to find the root, and to detect the error.

Now, the generation of the error vector is random, hence we can assume the
probability of having an error in position i to be around st/2n; since the codes give
the best performance when mst is close to n/2, we can estimate this probability
as 1/4m, which is reasonably low for any nontrivial choice of m; however, we still
argue that the code is not fully decodable and we now explain how to adapt the key
generation algorithm to ensure that all the xi’s are nonzero.

As part of the key generation algorithm we assign to each xi the value vi, hence it
is enough to restrict the possible choices for ω to the set {α ∈ Fqm|α 6= 1/hi + 1/h0,
i = 0, . . . , n− 1}. In doing so, we considerably restrict the possible choices for ω but
we ensure that the decoding algorithm works properly.
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