Quantum-Secure Authentication

Boris Škorić

Outline

- Remote authentication of objects
- Unclonable Physical Functions (PUFs)
- Quantum readout of PUFs
 - theory
 - physical realization
- Security analysis

Authentication of Objects

How do you verify if an object is authentic?

- Step 1: registration / enrollment
- Step 2: check if fresh observation matches enrolled data

State of the art: <u>PUFs</u> (classical objects)

Unclonable Physical Function

[Pappu et al. 2001]

PUF:

- physical object
- challenge & response
- behaves like a keyed hash function
- making physical clone is difficult

speckle pattern

Attacks on PUF authentication

Attack #1: exact physical cloning

Attack #2: physical emulation

• build a *different* system that produces correct responses

Possible in theory; Infeasible with current technology; Arms race!

Attack #3: digital emulation

- build challenge-response table
- determine the challenge
- find the response in the table

Topic of this talk

"Hands-off" authentication of PUFs

Attacker model:

- We want to authenticate a PUF
- It is in hostile territory
- No phys. cloning
- No phys. emulation (no arbitrary unitaries)
- PUF has limited entropy ⇒ can be digitally emulated!

(Classical) solution:

• a *trusted device* in hostile territory

Problem: unknown security, and expensive; "arms race" situation

Why is this secure without trusted reader?

- Measuring destroys state information
- No-cloning theorem: unknown quantum cannot be copied
- \Rightarrow Attacker cannot figure out what the challenge is

The long arm of quantum physics

Implementation is not trivial!

Problem:

- measurement reveals little info about photon
- how to verify a complex photon state?

Magical ingredient: Spatial Light Modulator (SLM)

• Extract one strategically chosen bit of info:

correct speckle pattern or not?

9

Verifying single-photon speckle

[Goorden et al. 2013]

- correct PUF response \implies photon detection
- incorrect PUF response \implies no detection

Experimental setup

[Goorden et al. 2013]

- Weak laser pulse: 230 photons
- 1000 SLM pixels

[Same thing, more fancy picture]

Experimental results

Clear distinction between correct and incorrect response

ISSN: 2334-2536 optica.osa.org

Cover page, Dec. 2014

Dutch physicists develop first fraud-proof credit card 💷 💈

Fraud-proof Credit Cards Possible with Quantum

Security analysis: quadratures

<u>Attack model</u>:

- All PUF properties are publicly known
- Attacker does measurements on challenge
 - thousands of detectors; ideal equipment
 - best choice of measurements ("quadrature")
- Table Lookup based on best guess for challenge
- Attacker creates response state and sends it

<u>Analysis</u>:

- Compute Prob[False Accept]
 - waveguide model
 - average over challenge space and meas. outcomes

Prob[False Accept]
$$\approx \frac{n}{K+n}$$
 $n=\#$ photons K = $\#$ modes

Handwaving analysis

Intuition:

- Each photon gives a click in 1 of K modes
 > attacker gets n log(K) bits of info
- Challenge is spread out over K modes
 K log(K) bits of entropy
- Known fraction = n/K
- Apply Fano inequality

$$P_{\text{err}} \ge \frac{\text{ignorance}}{\log(\text{space})} = \frac{K \log K - n \log K}{K \log K} = 1 - \frac{n}{K}$$

 $Prob[False Accept] \leq n/K$

Theorem by Bruss and Macchiavello (1999):

The maximum achievable fidelity for state estimation from n identical copies of a K-dimensional quantum system is

$$\frac{n+1}{n+K}$$

Summary

- <u>Remote object authentication: Quantum Readout of PUFs</u>
 Theoretical optimum.
- Unconditionally secure against digital emulation analysis based on optimal challenge estimation \Rightarrow formula for False Accept prob: (n+1)/(n+K)
- <u>Physical realization</u> (2012-2013)
 <u>Spatial Light Modulator</u> + photon detector
- <u>Future work</u>
 - "formal" security proof for generic challenges
 - other physical realizations

Boris

Marcel Bas Škorić Goorden Horstmann

MFSA Institute for Nanotechnology

Pepijn Pinkse Allard Mosk

TU/eEi

Questions ?