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Postulates of Quantum Computation

1. A quantum system is fully defined by its state 1)) € H where
H  C?" is the Hilbert space of unit-length vectors, i.e.,
)3 = 1) TIv) = (¥ly) = 1.
2. Any valid computation is a unitary transformation
T:H — H: ) — T|) of the state and can be described by a
unitary matrix 7' € C2"*2" such that 77T = I.

3. The composition of two quantum states |¢) € H; C C?" and
|o) € Ho C C2' is described by their tensor product:
k+£
|'(/)¢> = |¢>®|¢> € Hi ®Ho c C? - .



Tensor Product

Inner product:

a i b
<a;> <b;) = a1b1 + (12b2
ay b1 1-47 arby  a1bs
as ) \ba) — \asby agby

a1by

a1 b1 _ a1b2
(a2> © <b2> o a2b1

azbo

Outer product:

Tensor product:



Postulates of Quantum Computation

. A quantum system is fully defined by its state 1)) € H where

H c C?" is the Hilbert space of unit-length vectors, i.e.,
)13 = |)*TIy) = (Ply) = 1.

. Any valid computation is a unitary transformation

T:H — H: ) — T|) of the state and can be described by a
unitary matrix 7' € C2**2" sych that T*TT = 1.

. The composition of two quantum states |¢)) € H; C c?" and
|p) € Ha C C2' is described by their tensor product:

o) = 1) @ [6) € Ha @ Ha €7,

. Measurement M happens with respect to an orthogonal basis

[b1), |b2), ..., |bk) € H and fixes the state to one basis vector
M{4) = [b:) with probability (t[b;)* (b [4).



Quantum Computation Example

(4.) Use the basis |0), |1) for H.
(1.) A qubit 1)) € H is described by a vector (a, 3) € C? such that
[¥) = l0) + BI1).
(4.) Measuring yields |0) with probability a*« and |1) with 5*0.
> Let [1), |¢) € H be two qubits set to zero, ie., |¢p) = |[p) = |0).

(3.) The composite system is described by
Vo) = |¥) @ |¢) = «|00) + B]01) + 7|10} + 6|11) with e.g. o =1
and f=~v=4d=0.

(2.) Apply the unitary transformation

V2 00 -1v2 a
B 0 10 0 ~ |8
%f 00 4v2 5

> Result: T|¢) = $1/2(00) + 0[01) + 0]10) + £+/2|11

)-
(4.) Measuring yields [00) with probability 3 and |11) with 3.



Modes of Computation

P=0.2x0.7
P=1 +0.8 0.6 ( 2v0.6 +v0.8V0 ) P—1
052z0.12

deterministic probabilistic quantum nondeterministic



Postulates of Probabilistic Computation

. A guantum probabilistic system is fully defined by its state (or
probability distribution) ¢ € [0; 1]2k having % ¢;-norm equal to 1

. Any valid computation is a transformation 7" : ¢ — T of the state
and can be described by a tmitary stochastic matrix T € [0; 1]2"%2"
such that all rows and columns sum to 1.

. The composition of two states ¢ € [0;1]2" and ¢ € [0;1]2 is
described by their tensor product: 1 @ ¢ € [0; 1]2“[.

. Measurement Sampling (denoted by M) happens with respect to an
orthogonal basis by, b, ..., by € [0; 1}2k and fixes the state to one

basis vector M1 = b; with probability {rbrdb:lab) bl .



Quantum Computation in 2 Easy Steps

0. Start with probabilistic computation.

1. Compute with probability distributions as opposed to samples.
e sample afterwards

2. Use continuous transitions opposed to discrete ones.

e the nth root of a computation is always well defined
e —— complex numbers, /2 norm

o fixedness of quantum circuits is a minor detail

e use unitary local transformations






Interference for Quantum Computers

1

V2
Ul0) = J510) + —5[1) and U?|0) = |1)

1
|0) U] U] 1) with U = (ﬂ

S=SIL
~—

observable outcomes:

0
/ \
0 )

VAN VAN
o =% Ay

e destructive interference is the source of all quantum wierdness
e quantum algorithm design = engineering interference



v

Shor’s Algorithm

factorize n = pq

obtain order p(n) of Z/nZ, x
|a), |b) are both quantum
registers of k > |n| qubits

Set |a) = |b) = |0F). result: |a,b) = |0,0)
_ (V2 V2
Apply H = (4/& 1/ﬂ>
2k 1
to each qubit of |a). result: |a,b) = W Z |i,0)
2k — 1

Apply f:l]a,b) — |a,b® x"modn). result: |a,b) = Z |3, x%)

Measure only |b). result: |b) = |xy>

result: |a) = - > |4)

i€(y+p(n)Z)
Apply g : |a) — |QFT(a)) result: |a) = Z ’jso(n)>

Measure |a) result: |a) = ‘ { 'w(n)w>
Repeat.



DFT Example

e factorize n = 35
e hb=6 — orderr=10
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Discrete Logarithm

discrete logarithm: given g, ¢” € G, find x € Z
define function f: Z xZ — G : (y,2) — (¢*) Yg*

v(y,

2) ELXZL. fly,z)=fy+1,z+ )

f has period p = (1,x)

algorithm:

1.

akrwn

operate on 3 registers of N qubits, initially |a,b,c) = 0,0, 1)

set to uniform superposition |a) = |b) = ==, |)

compute f: apply |a,b,c) — |a,b,c X f(a,b))

apply Fourier transform: apply |a) — |QFT(a)) and |b) — |QFT(d))

measure the state; w.h.p. b/a ~ x

period in Z — QFT
periodin Z x7Z — QFT x QFT

generalizations possible?



Simon’s Algorithm

e problem: given a function f : {0,1}* — {0,1}* with an unknown

period p € {0,1}F s.t. V. f(z) =

1. init 2 registers |a, b) = |0F0¢)
_(1VE N2
capply = (10 173)
to each qubit of |a)

3. apply [a,b) — |a,b & f(a))

4. measure only |b)

(VI Ve
5. apply H= (_1/\/5 1/\&)

to each qubit of |a)
— bitflips cause interference

6. measure |a)
7. repeat — obtain many samples

f(x@p), find p

result: |a) = 577 |7)
i€{0,1}*
result: |a,b) = 2,}/2 >, fz)
ze{0,1}F
result: |a,b) = J5[2,b) + 5|2 @ p,b)
where Z s.t. f(Z) =b
recall: H|0) = %ﬂ ) +11))
and H|1) = %(lﬂ) 1)
result: a,b) =- > |yAp,b)
ye{o,l}k

result: random y € {0,1}¥ st. y Ap =0



Simon’s Algorithm IS Shor’s Algorithm

Shor: factorize

1.
2.

3.
4.

uniform |a)

apply [b) = [b+ f(a))
with f(a) = 2*modn
measure |b)

QFT-2I"! on |a)

. measure |a)
. repeat

(if necessary)

Shor: dlog

1.
2.

uniform |a), |b)
apply [¢) = |c + f(a, b))
with f(a,b) = (g%) g’

. measure |c)
4. QFT-2IPIx QFT-2/7!

on |a,b)

. measure |a), |b)
. repeat

(if necessary)

Simon

1.
2.

3.
4.

uniform |a)
apply [b) — [b & f(a))

measure |b)
QFT-2 x...x QFT-2
on |a)

. measure |a)
. repeat



Hidden Subgroup Problem

Definition

Let G, + be a group with subgroup H. Let f: G — {0,1}* be a
function that produces the same image iff its inputs are from the same
coset of H, I.e.,

Vo1,92 € G.g1 — g2 € H & f(g1) = f(g2) -

The Hidden Subgroup Problem (HSP) is to find a generating set of H
given oracle access to f.
e factorization: G =Z,+ and H = ¢(n)Z, +

o discrete logarithm: G =Z X Z,+ and H = Z (i) ,+

e Simon’s problem: G = {0,1}*, @ and H = {0, p},®



Environment of HSP

Non-Abelian HSP
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Simon vs. Even-Mansour

Even-Mansour construction:
k k

m —p D ¢
e given quantum access to the circuit C|m) = |c) and given P; find k
solution®:

fle)=Plzdk)dkd P(x)
o f(xdk)=Pa)Dkd® Plxdk)
e period is k!

1H. Kuwakado, M. Morii. “Security on the Quantum-type Even-Mansour Cipher”
IEICE 2012



Simon vs. Other Constructions

secure? 2 ‘ CBC-MAC PMAC GMAC GCM OCB

classical queries v v v v v

quantum queries X X X X X
secure? 3 | CBC CFB  OFB CTR XTS
classical queries v v v v ?

x /v

quantum queries

x/v v X

e but all attacks require quantum access to keyed primitive

2M. Kaplan et al. “Breaking Symmetric Cryptosystems using Quantum Period

Finding"”

3M. Vivekanand et al. "“Post-quantum Security of the CBC, CFB, OFB, CTR, and

XTS Modes of Operation”



Quantum Oracle Queries

Enc/Dec/Sig are typically accessible over classical channels only

e non-trivial quantum states will collapse
e IND-qCPA vs. IND-CPA and EUF-qCMA vs. EUF-CMA

RO should be accessible quantumly (— QROM)
also any known circuit (Enc/Dec/Sig but without secret key)

is quantum access to keyed primitive worth studying?

e quantum encryption

e accidental quantum computers

e white-box cryptography

e protocols and game-based proofs <— big deal yeah ... right ...

key principle: no quantum interaction with secret key material



Grover’s Algorithm

Let F: {0,1}* — {0,1}* be OWF with 1 preimage a to b = F(a)
task: given oracle access to F' and given b; find a

best classical algorithm: exhaustive search — O(2F)

quantum oracle access: Fla) — |b) = |F(a))

best quantum algorithm: Grover — O(2%/?)



Grover’s Algorithm: Elements

A — uniform sampler

o Al0*) = \/2722 o i) = |¥)
e Apply a Hadamard gate to each qubit

working plane
e the vectors |a) = |¥1) and |¥) span a plane
e let |[Ug) lie in this plane, perpendicular to |a)
So — mirror about |0%)
—|z) ifz=0
* Solz) :{ ‘|2:> else
e compute |z,q) — |z, ¢ ® (z = 0)) and keep |¢) = 1/+/2(|0)
o 1/V2[2)(|0) 1)) = 1/v2[z)(|0) — |1)) (if = # 0)

- 1)

* 1/v2(0)(|0) — 1)) = 1/v2|0)(|1) — |0)) = —=1/v/20)(|0) —[1))

S, — mirror about |¥)

—|z) fF(z)=0
* Sxlz) :{ o) i F(x) £ b

e compute |z, ¢) — |z,q® (F(x) = b)) and keep |¢) = 1/v/2(|0) —

1)



Grover’s Algorithm: Step-by-Step

Single iteration: |®) — Q|®) = —AS(A™'S, |®)

|®) current state

Sy |®) : flip about [¥y)

A71S,|®): change of basis
—SoA!S, |®): flip about |¥)
—ASgA~!S, |®): undo change of basis

- o)

every iteration moves |®) closer

to |¥y) by an angle 20

S, |®) Q: what are ¢ and (initially) 67



Grover’s Algorithm: Complexity

sind = (¥4|¥)
5%(...010...)(...1/\/2?...)T:1/\/2?

ity — L/2=0ne _ 1/2-6  19k/2 _ 1
Ftr = ot = o= R 52 3




Amplitude Amplification

Q: what if #A = #{x|F(x) =b} > 17
Q: what if A is better than uniform?

A: no problem

|®)  for uniform A and #A > 1 holds:

Hitr ~ O(\/2F[#A)
)
- W)

Sx|®)
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