KU LEUVEN

Intro to Quantum Computation and Quantum Cryptanalysis

September, 2016

Alan Szepieniec

KU Leuven, ESAT/COSIC

Postulates of Quantum Computation

- 1. A quantum system is fully defined by its state $|\psi\rangle\in\mathcal{H}$ where $\mathcal{H}\subset\mathbb{C}^{2^k}$ is the Hilbert space of unit-length vectors, i.e., $|||\psi\rangle||_2^2=|\psi\rangle^{*\mathsf{T}}|\psi\rangle=\langle\psi|\psi\rangle=1.$
- 2. Any valid computation is a unitary transformation $T:\mathcal{H}\to\mathcal{H}:|\psi\rangle\mapsto T|\psi\rangle$ of the state and can be described by a unitary matrix $T\in\mathbb{C}^{2^k\times 2^k}$ such that $T^{*\mathsf{T}}T=I$.
- 3. The composition of two quantum states $|\psi\rangle \in \mathcal{H}_1 \subset \mathbb{C}^{2^k}$ and $|\phi\rangle \in \mathcal{H}_2 \subset \mathbb{C}^{2^\ell}$ is described by their *tensor product*: $|\psi\phi\rangle = |\psi\rangle \otimes |\phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \subset \mathbb{C}^{2^{k+\ell}}$.

Tensor Product

Inner product:

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}^\mathsf{T} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a_1 b_1 + a_2 b_2$$

Outer product:

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}^\mathsf{T} = \begin{pmatrix} a_1b_1 & a_1b_2 \\ a_2b_1 & a_2b_2 \end{pmatrix}$$

Tensor product:

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \otimes \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1b_1 \\ a_1b_2 \\ a_2b_1 \\ a_2b_2 \end{pmatrix}$$

Postulates of Quantum Computation

- 1. A quantum system is fully defined by its state $|\psi\rangle \in \mathcal{H}$ where $\mathcal{H} \subset \mathbb{C}^{2^k}$ is the Hilbert space of unit-length vectors, i.e., $||\psi\rangle||_2^2 = |\psi\rangle^{*\mathsf{T}}|\psi\rangle = \langle\psi|\psi\rangle = 1$.
- 2. Any valid computation is a unitary transformation $T:\mathcal{H}\to\mathcal{H}:|\psi\rangle\mapsto T|\psi\rangle$ of the state and can be described by a unitary matrix $T\in\mathbb{C}^{2^k\times 2^k}$ such that $T^{*\mathsf{T}}T=I$.
- 3. The composition of two quantum states $|\psi\rangle \in \mathcal{H}_1 \subset \mathbb{C}^{2^k}$ and $|\phi\rangle \in \mathcal{H}_2 \subset \mathbb{C}^{2^\ell}$ is described by their *tensor product*: $|\psi\phi\rangle = |\psi\rangle \otimes |\phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \subset \mathbb{C}^{2^{k+\ell}}$.
- 4. Measurement M happens with respect to an orthogonal basis $|b_1\rangle, |b_2\rangle, \ldots, |b_k\rangle \in \mathcal{H}$ and fixes the state to one basis vector $M|\psi\rangle = |b_i\rangle$ with probability $\langle \psi|b_i\rangle^*\langle b_i|\psi\rangle$.

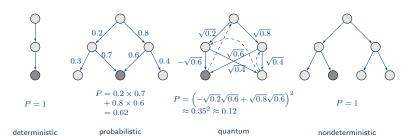
Quantum Computation Example

- (4.) Use the basis $|0\rangle, |1\rangle$ for \mathcal{H} .
- (1.) A qubit $|\psi\rangle \in \mathcal{H}$ is described by a vector $(\alpha, \beta) \in \mathbb{C}^2$ such that $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$.
- (4.) Measuring yields $|0\rangle$ with probability $\alpha^*\alpha$ and $|1\rangle$ with $\beta^*\beta$.
 - ightharpoonup Let $|\psi\rangle, |\phi\rangle \in \mathcal{H}$ be two qubits set to zero, i.e., $|\psi\rangle = |\phi\rangle = |0\rangle$.
- (3.) The composite system is described by $|\psi\phi\rangle=|\psi\rangle\otimes|\phi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle \text{ with e.g. }\alpha=1 \text{ and }\beta=\gamma=\delta=0.$
- (2.) Apply the unitary transformation

$$T = \begin{pmatrix} \frac{1}{2}\sqrt{2} & 0 & 0 & -\frac{1}{2}\sqrt{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{2}\sqrt{2} & 0 & 0 & \frac{1}{2}\sqrt{2} \end{pmatrix} \text{ to } |\psi\phi\rangle \cong \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}.$$

- $\rhd \ \ \text{Result:} \ T|\psi\phi\rangle = \tfrac{1}{2}\sqrt{2}|00\rangle + 0|01\rangle + 0|10\rangle + \tfrac{1}{2}\sqrt{2}|11\rangle.$
- (4.) Measuring yields $|00\rangle$ with probability $\frac{1}{2}$ and $|11\rangle$ with $\frac{1}{2}$.

Modes of Computation



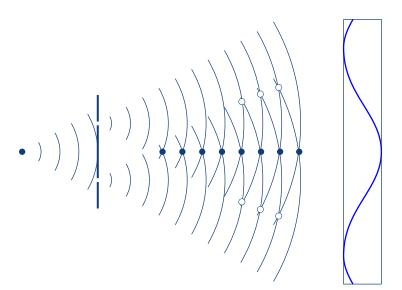
Postulates of Probabilistic Computation

- 1. A quantum probabilistic system is fully defined by its state (or probability distribution) $\psi \in [0;1]^{2^k}$ having ℓ_2 ℓ_1 -norm equal to 1
- 2. Any valid computation is a transformation $T:\psi\mapsto T\psi$ of the state and can be described by a unitary stochastic matrix $T\in[0;1]^{2^k\times 2^k}$ such that all rows and columns sum to 1.
- 3. The composition of two states $\psi \in [0;1]^{2^k}$ and $\phi \in [0;1]^{2^\ell}$ is described by their tensor product: $\psi \otimes \phi \in [0;1]^{2^{k+\ell}}$.
- 4. Measurement Sampling (denoted by M) happens with respect to an orthogonal basis $b_1, b_2, \ldots, b_k \in [0;1]^{2^k}$ and fixes the state to one basis vector $M\psi = b_i$ with probability $(\psi |b_i)^* \langle b_i | \psi \rangle$ $b_i^\mathsf{T} \psi$.

Quantum Computation in 2 Easy Steps

- 0. Start with probabilistic computation.
- 1. Compute with probability distributions as opposed to samples.
 - sample afterwards
- 2. Use *continuous* transitions opposed to *discrete* ones.
 - ullet the nth root of a computation is always well defined
 - ullet complex numbers, ℓ_2 norm
 - fixedness of quantum circuits is a minor detail
 - use unitary local transformations

Interference

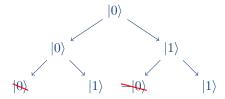


Interference for Quantum Computers

$$|0\rangle \longrightarrow U \longrightarrow |1\rangle \qquad \text{with } U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$U|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \text{ and } U^2|0\rangle = |1\rangle$$

observable outcomes:



- destructive interference is the source of all quantum wierdness
- quantum algorithm design = engineering interference

Shor's Algorithm

result: $|a,b\rangle = |0,0\rangle$

factorize
$$n = pq$$

- obtain order $\varphi(n)$ of $\mathbb{Z}/n\mathbb{Z}, \times$
- $|a\rangle, |b\rangle$ are both quantum registers of k > |n| qubits
- Set $|a\rangle = |b\rangle = |0^k\rangle$.
- 2. Apply $H = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$

to each qubit of $|a\rangle$.

result:
$$|a,b\rangle = \frac{1}{\sqrt{2^k}} \sum\limits_{i=0}^{2^k-1} |i,0\rangle$$

- 3. Apply $f: |a,b\rangle \mapsto |a,b \oplus x^a \mod n\rangle$.
- 4. Measure only $|b\rangle$.

result:
$$|a,b\rangle=\cdot\sum\limits_{i=0}\ |i,x^i\rangle$$
 result: $|b\rangle=|x^y\rangle$

result:
$$|b\rangle = |x^y\rangle$$

result:
$$|a\rangle = \sum_{i \in (y + \varphi(n)\mathbb{Z})} |i\rangle$$

5. Apply
$$g:|a\rangle\mapsto |\mathsf{QFT}(a)\rangle$$

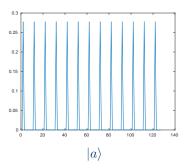
6. Measure
$$|a\rangle$$

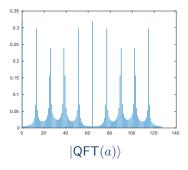
result:
$$|a\rangle = \sum_{j} \cdot \left| j \frac{2^k}{\varphi(n)} \right\rangle$$

result:
$$|a\rangle = \left|\left[j\frac{2^k}{\varphi(n)}\right]\right\rangle$$

DFT Example

- factorize n = 35
- $b=6 \longrightarrow \text{order } r=10$





Discrete Logarithm

- discrete logarithm: given $g, g^x \in \mathbb{G}$, find $x \in \mathbb{Z}$
- define function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{G}: (y,z) \mapsto (g^x)^{-y}g^z$
- $\forall (y,z) \in \mathbb{Z} \times \mathbb{Z} \cdot f(y,z) = f(y+1,z+x)$
- f has period p = (1, x)
- algorithm:
 - 1. operate on 3 registers of N qubits, initially $|a,b,c\rangle = |0,0,1\rangle$
 - 2. set to uniform superposition $|a\rangle = |b\rangle = \frac{1}{\sqrt{N}} \sum_i |i\rangle$
 - 3. compute $f: \text{ apply } |a,b,c\rangle \mapsto |a,b,c \times f(a,b)\rangle$
 - 4. apply Fourier transform: apply $|a\rangle \mapsto |\mathsf{QFT}(a)\rangle$ and $|b\rangle \mapsto |\mathsf{QFT}(b)\rangle$
 - 5. measure the state; w.h.p. $b/a \approx x$

- ullet period in \mathbb{Z} \longrightarrow QFT
- period in $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathsf{QFT} \times \mathsf{QFT}$
- generalizations possible?

Simon's Algorithm

- problem: given a function $f:\{0,1\}^k \to \{0,1\}^\ell$ with an unknown period $p \in \{0,1\}^k$ s.t. $\forall x \,.\, f(x) = f(x \oplus p)$, find p
- 1. init 2 registers $|a,b\rangle = |0^k 0^\ell\rangle$

2. apply
$$H=\begin{pmatrix}1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2}\end{pmatrix}$$
 to each qubit of $|a\rangle$

3. apply
$$|a,b\rangle\mapsto |a,b\oplus f(a)\rangle$$

4. measure only
$$|b\rangle$$

5. apply
$$H = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$
 to each qubit of $|a\rangle$ \rightarrow bitflips cause interference

6. measure
$$|a\rangle$$

result:
$$|a \rangle = \frac{1}{2^{k/2}} \sum_{i \in \{0,1\}^k} |i \rangle$$

result:
$$|a,b\rangle = \frac{1}{2^{k/2}} \sum_{x \in \{0,1\}^k}^{n} |x,f(x)\rangle$$

result:
$$|a,b\rangle = \frac{1}{\sqrt{2}}|\hat{x},b\rangle + \frac{1}{\sqrt{2}}|\hat{x}\oplus p,b\rangle$$
 where \hat{x} s.t. $f(\hat{x}) = b$

recall:
$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

and
$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

result:
$$|a,b\rangle = \sum_{y \in \{0,1\}^k} |y \wedge \bar{p},b\rangle$$

result: random
$$y \in \{0,1\}^k$$
 s.t. $y \wedge p = 0$

Simon's Algorithm IS Shor's Algorithm

Shor: factorize

- 1. uniform $|a\rangle$
- 2. apply $|b\rangle \mapsto |b+f(a)\rangle$ 2. apply $|c\rangle \mapsto |c+f(a,b)\rangle$ with $f(a) = x^a \mod n$
- 3. measure $|b\rangle$
- 4. QFT- $2^{|n|}$ on $|a\rangle$
- 5. measure $|a\rangle$
- 6. repeat (if necessary)

Shor: dlog

- 1. uniform $|a\rangle, |b\rangle$
 - with $f(a,b) = (q^x)^{-a}q^b$
 - 3. measure $|c\rangle$
 - 4. QFT- $2^{|p|} \times QFT$ - $2^{|p|}$ on $|a,b\rangle$
 - 5. measure $|a\rangle, |b\rangle$
 - 6. repeat
 - (if necessary)

Simon

- 1. uniform $|a\rangle$
- 2. apply $|b\rangle \mapsto |b \oplus f(a)\rangle$
- 3. measure $|b\rangle$
- 4. QFT-2 × . . . × QFT-2 on $|a\rangle$
- 5. measure $|a\rangle$
- 6. repeat

Hidden Subgroup Problem

Definition

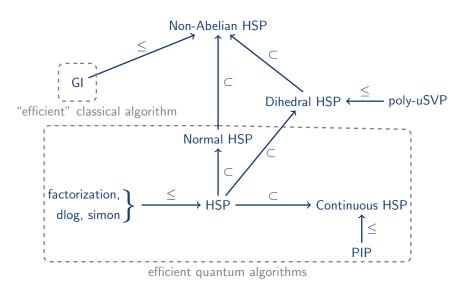
Let G, + be a group with subgroup H. Let $f: G \to \{0,1\}^*$ be a function that produces the same image iff its inputs are from the same coset of H, i.e.,

$$\forall g_1, g_2 \in G . g_1 - g_2 \in H \Leftrightarrow f(g_1) = f(g_2) .$$

The *Hidden Subgroup Problem (HSP)* is to find a generating set of H given oracle access to f.

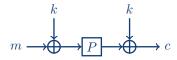
- factorization: $G = \mathbb{Z}, +$ and $H = \varphi(n)\mathbb{Z}, +$
- discrete logarithm: $G = \mathbb{Z} \times \mathbb{Z}, + \text{ and } H = \mathbb{Z} \begin{pmatrix} 1 \\ x \end{pmatrix}, +$
- Simon's problem: $G = \{0,1\}^k, \oplus$ and $H = \{0,p\}, \oplus$

Environment of HSP

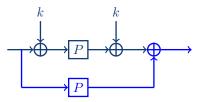


Simon vs. Even-Mansour

Even-Mansour construction:



- given quantum access to the circuit $\mathcal{C}|m\rangle = |c\rangle$ and given P; find k
- solution¹:



- $f(x) = P(x \oplus k) \oplus k \oplus P(x)$
- $f(x \oplus k) = P(x) \oplus k \oplus P(x \oplus k)$
- period is k!

¹H. Kuwakado, M. Morii. "Security on the Quantum-type Even-Mansour Cipher" **IEICE 2012**

Simon vs. Other Constructions

secure? ²	CBC-MAC	PMAC	GMAC	GCM	OCB
classical queries	✓	√	√	✓	\checkmark
quantum queries	×	×	×	×	×

secure? ³	CBC	CFB	OFB	CTR	XTS
classical queries	√	✓	✓	√	?
quantum queries	×/✓	\times/\checkmark	\checkmark	\checkmark	×

• but all attacks require quantum access to keyed primitive

 $^{^2}$ M. Kaplan *et al.* "Breaking Symmetric Cryptosystems using Quantum Period Finding"

 $^{^3}$ M. Vivekanand *et al.* "Post-quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes of Operation"

Quantum Oracle Queries

- Enc/Dec/Sig are typically accessible over classical channels only
 - non-trivial quantum states will collapse
 - IND-gCPA vs. IND-CPA and EUF-gCMA vs. EUF-CMA
- RO should be accessible quantumly (→ QROM)
- also any known circuit (Enc/Dec/Sig but without secret key)
- is quantum access to keyed primitive worth studying?
 - quantum encryption
 - accidental quantum computers

 - white-box cryptography
 protocols and game-based proofs ← big deal
- key principle: no quantum interaction with secret key material

Grover's Algorithm

- Let $F: \{0,1\}^k \to \{0,1\}^k$ be OWF with 1 preimage a to b=F(a)
- ullet task: given oracle access to F and given b; find a
- best classical algorithm: exhaustive search $O(2^k)$
- quantum oracle access: $\mathcal{F}|a\rangle\mapsto|b\rangle=|F(a)\rangle$
- best quantum algorithm: Grover $O(2^{k/2})$

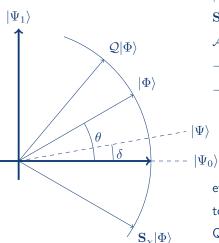
Grover's Algorithm: Elements

- A uniform sampler
 - $\mathcal{A}|0^k\rangle = \frac{1}{\sqrt{2k}} \sum_{i=0}^{2^k-1} |i\rangle = |\Psi\rangle$
 - Apply a Hadamard gate to each qubit
- · working plane
 - ullet the vectors $|a
 angle=|\Psi_1
 angle$ and $|\Psi
 angle$ span a plane
 - ullet let $|\Psi_0
 angle$ lie in this plane, perpendicular to |a
 angle
- \mathbf{S}_0 mirror about $|0^k\rangle$
 - $\mathbf{S}_0|x\rangle = \begin{cases} -|x\rangle & \text{if } x = 0\\ |x\rangle & \text{else} \end{cases}$
 - compute $|x,q\rangle\mapsto |x,q\oplus(x=0)\rangle$ and keep $|q\rangle=1/\sqrt{2}(|0\rangle-|1\rangle)$
 - $1/\sqrt{2}|x\rangle(|0\rangle |1\rangle) \mapsto 1/\sqrt{2}|x\rangle(|0\rangle |1\rangle)$ (if $x \neq 0$)
 - $1/\sqrt{2}|0\rangle(|0\rangle |1\rangle) \mapsto 1/\sqrt{2}|0\rangle(|1\rangle |0\rangle) = -1/\sqrt{2}|0\rangle(|0\rangle |1\rangle)$
- \mathbf{S}_{χ} mirror about $|\Psi_0\rangle$
 - $\mathbf{S}_{\chi}|x\rangle = \begin{cases} -|x\rangle & \text{if } F(x) = b \\ |x\rangle & \text{if } F(x) \neq b \end{cases}$
 - compute $|x,q\rangle\mapsto |x,q\oplus (F(x)=b)\rangle$ and keep $|q\rangle=1/\sqrt{2}(|0\rangle-|1\rangle)$

Grover's Algorithm: Step-by-Step

Single iteration:
$$|\Phi\rangle\mapsto\mathcal{Q}|\Phi\rangle=-\mathcal{A}\mathbf{S}_0\mathcal{A}^{-1}\mathbf{S}_\chi|\Phi\rangle$$

$$|\Phi\rangle \text{ current state}$$



 $\mathbf{S}_{\chi}|\Phi
angle$: flip about $|\Psi_0
angle$

 $\mathcal{A}^{-1}\mathbf{S}_{\chi}|\Phi\rangle$: change of basis

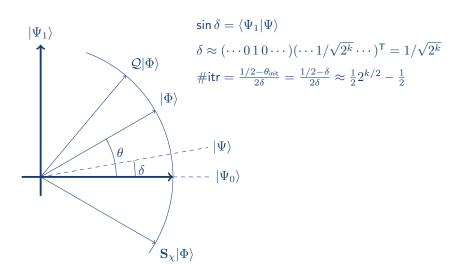
 $-\mathbf{S}_0\mathcal{A}^{-1}\mathbf{S}_\chi|\Phi
angle$: flip about $|\Psi
angle$

 $-\mathcal{A}\mathbf{S}_0\mathcal{A}^{-1}\mathbf{S}_\chi|\Phi\rangle$: undo change of basis

every iteration moves $|\Phi\rangle$ closer to $|\Psi_1\rangle$ by an angle 2δ

Q: what are δ and (initially) θ ?

Grover's Algorithm: Complexity



Amplitude Amplification

