KU LEUVEN

Quantum Attack on LWE/LPN

(A strategy for a)

September 15, 2016

Alan Szepieniec

KU Leuven, ESAT/COSIC

Introduction

- LWE/LPN boils down to noisy linear algebra : $M \times \mathbf{v} + \mathbf{e}$
 - Gaussian elimination: ${\bf e}$ blows up
 - Least-Squares: undefined \mathbb{F}_q
- ... but quantum computers are notoriously robust against noise ...
 - quantum-error correcting codes
 - quantum function learning (with superposition oracle queries)
 - quantum image recognition
- so maybe also robust against LWE/LPN noise

where \approx holds up to an error $\varepsilon \sim \xi$.

 \rightarrow get to ask more equations!

Key takeaways:

- 1. ξ has little entropy
- 2. m > n (overdetermined)

Phase One

- 1. Sample $|\mathbf{e}\rangle = \bigotimes_{j=1}^m \mathcal{S}_{\xi}(|r_j\rangle).$
- 2. Compute $|\mathbf{\hat{b}} \mathbf{e}\rangle$
- 3. Set $|R\rangle$ to superposition of all row-dropping matrices $R \in \{0,1\}^{n \times m}$ such that RA is invertible.
- 4. Compute $|RA\rangle$, $|(RA)^{-1}\rangle$ and $|R(\mathbf{\hat{b}}-\mathbf{e})\rangle$
- 5. Compute $|\mathbf{c}\rangle = |(RA)^{-1}R(\mathbf{\hat{b}} \mathbf{e})\rangle$.
- 6. Measure $|\mathbf{c}\rangle$.

Intuition.

- $|{f e}
 angle$ corrects $arepsilon \Longrightarrow$ all R lead to ${f s}$
 - \uparrow negl. amplitude $\qquad \uparrow$ exponentially many paths
- $|\mathbf{e}\rangle$ no correction \Longrightarrow some R lead to s; most to random points in \mathbb{F}_q^n

Phase One

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 5/13

- 1. Sample $|\mathbf{e}\rangle = \bigotimes_{j=1}^m \mathcal{S}_{\xi}(|r_j\rangle).$
- 2. Compute $|\mathbf{\hat{b}}-\mathbf{e}
 angle$
- 3. Set $|R\rangle$ to superposition of all row-dropping matrices $R \in \{0,1\}^{n \times m}$ such that RA is invertible.
- 4. Compute $|RA\rangle$, $|(RA)^{-1}\rangle$ and $|R(\mathbf{\hat{b}}-\mathbf{e})\rangle$
- 5. Compute $|\mathbf{c}\rangle = |(RA)^{-1}R(\hat{\mathbf{b}} \mathbf{e})\rangle$.
- 6. Measure $|\mathbf{c}\rangle$.

Analysis.

- ... (lots of calculus) ...
- $\mathsf{E}[\langle \mathbf{s} | \mathbf{c} \rangle] = \bar{\eta}^n$ where $\bar{\eta} = \sum_{\varepsilon \in \mathbb{F}_q} \xi(\varepsilon)^{3/2}$
- \longrightarrow uses small entropy of $\xi \quad \checkmark$
- \longrightarrow independent of m \times

- 1. Start with $|\mathbf{c}\rangle = |(RA)^{-1}R(\mathbf{\hat{b}}-\mathbf{e})\rangle$
- 2. Use A to map to target space: $|{m b}\rangle = |A{m c}\rangle$
- $\rightarrow \mathrm{E}[\langle A\mathbf{s} | \boldsymbol{b} \rangle] = \bar{\eta}^n$
 - the rest of the amplitude of $|m{b}
 angle$ is distributed randomly across colA
 - strategy: send back to cloud around $\hat{\mathbf{b}}$

- amplitude amplification ?
- quantum walk ?

- 1. Start with $|\mathbf{c}\rangle = |(RA)^{-1}R(\mathbf{\hat{b}}-\mathbf{e})\rangle$
- 2. Use A to map to target space: $|{m b}\rangle = |A{m c}\rangle$
 - send $|b\rangle$ to cloud around $\hat{\mathbf{b}}$ amplitude amplification

$$\mathbf{S}_{\chi} : |\mathbf{x}\rangle \mapsto \begin{cases} -|\mathbf{x}\rangle & \text{if } \|\mathbf{x} - \hat{\mathbf{b}}\| < \alpha \\ |\mathbf{x}\rangle & \text{else.} \end{cases}$$

$$|\Psi_1
angle\propto\sum_{\{{f x}\,|\,\|{f x}-{f {f b}}\|$$

$$|\Psi_0
angle\propto\sum_{\{\mathbf{x}\,|\,\|\mathbf{x}-\mathbf{\hat{b}}\|\geqlpha\}}|\mathbf{x}
angle$$

・ロト ・ 日 ト ・ 王 ト ・ 王 ・ り へ で 7/13

- 1. Start with $|\mathbf{c}\rangle = |(RA)^{-1}R(\mathbf{\hat{b}} \mathbf{e})\rangle$
- 2. Use A to map to target space: $|{m b}\rangle = |A{m c}\rangle$
- send |b> to cloud around b
 amplitude amplification

$$\mathbf{S}_{\chi} : |\mathbf{x}\rangle \mapsto \begin{cases} -|\mathbf{x}\rangle & \text{if } \|\mathbf{x} - \hat{\mathbf{b}}\| < \alpha \\ |\mathbf{x}\rangle & \text{else.} \end{cases}$$

0.15

0.1

0.05

exponential running time

- 1. Start with $|{\bf c}\rangle = |(RA)^{-1}R({\bf \hat{b}}-{\bf e})\rangle$
- 2. Use A to map to target space: $|{m b}\rangle = |A{m c}\rangle$
 - send $|m{b}
 angle$ to cloud around $\hat{m{b}}$

quantum walk

- graph G = (V, E) with $V = \{0, \dots, q-1\}^m$ and $E(\mathbf{v}_1, \mathbf{v}_2) = 1 \Leftrightarrow \|\mathbf{v}_1 \mathbf{v}_2\|_1 = 1$
- transition function follows ξ^m :
- maps $\mathbf{v}\mapsto \mathbf{v}'\in N(\mathbf{v})$ with probability

$$\frac{\xi^m(\mathbf{v}'-\hat{\mathbf{b}})}{\sum\limits_{\mathbf{x}\in N(\mathbf{v})\cup\{\mathbf{v}\}}\xi^m(\mathbf{x}-\hat{\mathbf{b}})}$$

 \bullet and $\mathbf{v}\mapsto\mathbf{v}$ with probability

$$\frac{\xi^m(\mathbf{v} - \hat{\mathbf{b}})}{\sum\limits_{\mathbf{x} \in N(\mathbf{v}) \cup \{\mathbf{v}\}} \xi^m(\mathbf{x} - \hat{\mathbf{b}})}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · の Q · 9/13

- 1. Start with $|\mathbf{c}\rangle = |(RA)^{-1}R(\mathbf{\hat{b}} \mathbf{e})\rangle$
- 2. Use A to map to target space: $|{m b}\rangle = |A{m c}\rangle$
 - send $|m{b}
 angle$ to cloud around ${f \hat{b}}$

quantum walk

- graph G = (V, E) with $V = \{0, \dots, q-1\}^m$ and $E(\mathbf{v}_1, \mathbf{v}_2) = 1 \Leftrightarrow \|\mathbf{v}_1 \mathbf{v}_2\|_1 = 1$
- transition function follows ξ^m

- 1. Start with $|\mathbf{c}\rangle = |(RA)^{-1}R(\mathbf{\hat{b}} \mathbf{e})\rangle$
- 2. Use A to map to target space: $|{m b}\rangle = |A{m c}\rangle$
- send $|m{b}
 angle$ to cloud around $\hat{m{b}}$

quantum walk

- graph G = (V, E) with $V = \{0, \dots, q-1\}^m$ and $E(\mathbf{v}_1, \mathbf{v}_2) = 1 \Leftrightarrow \|\mathbf{v}_1 \mathbf{v}_2\|_1 = 1$
- transition function something more convex

Algorithm Outline

- 1. sample \mathcal{S}_{ξ} , get cloud $|\mathbf{\hat{b}}-\mathbf{e}
 angle$
 - 2. send to secret space, get |c
 angle
 - 3. multiply with A, get $|b\rangle$
 - 4. resample wrong amplitudes, densify cloud
- 5. repeat 2-4

intuition:

- every iteration a fraction of the wrong amplitude is sent to $|\mathbf{b}\rangle$ or $|\mathbf{s}\rangle$
- the amplitude associated with $|\mathbf{b}\rangle$ or $|\mathbf{s}\rangle$ never decreases

Last slide

- LWE: find s from A and $\hat{\mathbf{b}} = A\mathbf{s} + \mathbf{e}$ with $\mathbf{e} \sim \xi^m$
- phase 1
 - $|R\rangle$ superposition of row-dropping matrices R such that RA is invertible
 - $|\mathbf{e}
 angle$ sampled according to ξ^m
 - $|\mathbf{c}\rangle = |(RA)^{-1}R(\mathbf{\hat{b}} \mathbf{e})\rangle$ contains $|\mathbf{s}\rangle$
 - $E[\langle \mathbf{c} | \mathbf{s} \rangle] = \bar{\eta}^n$ with $\bar{\eta} = \sum_{\varepsilon \in \mathbb{F}_q} \xi(\varepsilon)^{3/2}$
- phase 2
 - use all of A to map $|{\bf c}\rangle$ back to $\mathbb{F}_q^m\colon |{\bm b}\rangle=|A{\bf c}\rangle$
 - |b
 angle has lots of amplitude "far" from ${f \hat{b}}$ send it back!
 - use amplitude amplification or quantum walk
- repeat
- suggestions / questions / comments?
- alan.szepieniec@esat.kuleuven.be