Preimage search using low communication cost parallel Grover algorithm

> Gustavo Banegas¹ and Daniel J. Bernstein^{1,2} TU/e Technische Universiteit Eindhoven University of Technology

> > Crypto Working Group September 8, 2017

1/22

¹Department of Mathematics and Computer Science Technische Universiteit Eindhoven gustavo@cryptme.in

²Department of Computer Science University of Illinois at Chicago djb@cr.yp.to

Reversibility

Finding *t*-images

Example

Conclusion

Preimage

Let *H* be a function that $H : \{0, 1\}^n \to \{0, 1\}^n$. Preimage search is given an output *y*, find a *x* such that H(x) = y.

Preimage

Let *H* be a function that $H : \{0,1\}^n \to \{0,1\}^n$. Preimage search is given an output *y*, find a *x* such that H(x) = y. It is desirable that given an output it should be computationally infeasible to find any input that hashes to that output.

Preimage

Consider n = 128 and H = AES and 0 fixed as a plain text, i.e., $H(x) = AES_x(0)$, where x is a key.

Preimage

Consider n = 128 and H = AES and 0 fixed as a plain text, i.e., $H(x) = AES_x(0)$, where x is a key. The complexity to find one key is 2^{128} guesses.

Brute-force search for one preimage

Let H be a function that $H: \{0,1\}^n \to \{0,1\}^n$.

The brute force is to check every input x given an output y. The time complexity will be 2^n guesses using classical computers.

Brute-force search for one preimage

Let H be a function that $H: \{0,1\}^n \to \{0,1\}^n$.

The brute force is to check every input x given an output y. The time complexity will be 2^n guesses using classical computers. If we apply Grover's algorithm, using a quantum computer, the complexity decreases to $2^{n/2}$ guesses.

Brute-force search for multi target preimages

Let *H* be a function that $H : \{0,1\}^n \to \{0,1\}^n$. However, we have a set of output *y*'s, i.e., $Y = \{y_1, y_2, \dots, y_t\}$ and we want to find one y_i .

Brute-force search for multi target preimages

Let *H* be a function that $H: \{0,1\}^n \to \{0,1\}^n$.

However, we have a set of output y's, i.e., $Y = \{y_1, y_2, \dots, y_t\}$ and we want to find one y_i .

Now, we verify every input x with set of output Y. If we **ignore** several costs, the complexity decreases to $2^n/t$ guesses in a classical computer.

If we apply Grover's algorithm, using a quantum computer, the complexity decreases to $2^{n/2}/t^{1/2}$ guesses.

Costs for comparison

One big cost for preimage search in both cases is the comparisons.

Costs for comparison

One big cost for preimage search in both cases is the comparisons.

- Classical computer:
 - ▶ Single target: (2ⁿ)
 - Multi target: $t * 2^n/t$

Costs for comparison

One big cost for preimage search in both cases is the comparisons.

7 / 22

- Classical computer:
 - ▶ Single target: (2ⁿ)
 - Multi target: $t * 2^n/t$
- Quantum computer:
 - ► Single target: 2^{n/2}
 - Multi target: $t * 2^{n/2}/t^{1/2}$

Parallel multi-target image attack for AES:

van Oorschot-Wiener "parallel rho method"

Parallel multi-target image attack for AES:

- van Oorschot–Wiener "parallel rho method"
 - It uses a mesh of p small processors.

Parallel multi-target image attack for AES:

- van Oorschot–Wiener "parallel rho method"
 - It uses a mesh of p small processors.
 - Each processor runs 2¹²⁸/pt fast steps, to find one of t independent AES keys k₁,..., k_t, using a fixed plain text, e.g, AES(0).

Parallel multi-target image attack for AES:

- van Oorschot–Wiener "parallel rho method"
 - It uses a mesh of p small processors.
 - Each processor runs 2¹²⁸/pt fast steps, to find one of t independent AES keys k₁,..., k_t, using a fixed plain text, e.g, AES(0).
- ► However, it is pre-quantum.

Parallel multi-target image attack for AES:

- van Oorschot–Wiener "parallel rho method"
 - It uses a mesh of p small processors.
 - Each processor runs 2¹²⁸/pt fast steps, to find one of t independent AES keys k₁,..., k_t, using a fixed plain text, e.g, AES(0).
- ► However, it is pre-quantum.

NIST has claimed that AES-128 is secure enough.

Distinguish Point

Consider $H : \{0, 1\}^b \to \{0, 1\}^b$ Take x an input of H, x' = H(x). Thereafter, take x' and apply H again, x'' = H(x'). It is possible to do it n times (H^n) , until a given condition is satified. In our case, we want the first 0 < d < b/2 bits as 0. $H^n_d(x)$ means d bits of x, computed n times.

Introduction - Parallel rho method

Distinguish Point

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Distinguish point in quantum computers

> The operations in quantum computer must be reversible;

Distinguish point in quantum computers

- The operations in quantum computer must be reversible;
- It is not possible to design a "simple circuit" for distinguish point;

Distinguish point in quantum computers

- The operations in quantum computer must be reversible;
- It is not possible to design a "simple circuit" for distinguish point;
- The sorting needs to be reversible too.

Using classical computers Example to compute $H^3(x)$:

time 0: x y

time 0:	X	У	
time 1:	X	у	H(x)

time 0:	X	У	
time 1:	X	у	H(x)
time 2:	X	у	$H^2(x)$

time 0:	X	У	
time 1:	X	У	H(x)
time 2:	x	У	$H^2(x)$
time 3:	X	$y + H^3(x)$	

time 0:	X	У	
time 1:	X	У	H(x)
time 2:	x	У	$H^2(x)$
time 3:	X	$y + H^3(x)$	

time 0: x y 0 0 0

time 0:xy000time 1:xyH(x)00

time 0:	X	У	0	0	0
time 1:	X	у	H(x)	0	0
time 2:	X	у	H(x)	$H^2(x)$	0

time 0:	Х	У	0	0	0
time 1:	X	у	H(x)	0	0
time 2:	X	у	H(x)	$H^2(x)$	0
time 3:	X	$y + H^3(x)$	H(x)	$H^2(x)$	0

time 0:	X	У	0	0	0
time 1:	X	у	H(x)	0	0
time 2:	X	у	H(x)	$H^2(x)$	0
time 3:	x	$y + H^3(x)$	H(x)	$H^2(x)$	0
time 4:	x	$y + H^3(x)$	H(x)	0	0

Distinguish point in quantum setting Trade-off from Bennett–Tompa

Example to compute $H^3(x)$:

time 0:	X	У	0	0	0
time 1:	X	у	H(x)	0	0
time 2:	X	у	H(x)	$H^2(x)$	0
time 3:	X	$y + H^3(x)$	H(x)	$H^2(x)$	0
time 4:	X	$y + H^3(x)$	H(x)	0	0
time 5:	x	$y + H^{3}(x)$	0	0	0

Distinguish point in quantum setting Trade-off from Bennett–Tompa

Example to compute $H^3(x)$:

X	У	0	0	0
X	У	H(x)	0	0
x	У	H(x)	$H^2(x)$	0
x	$y + H^3(x)$	H(x)	$H^2(x)$	0
x	$y + H^3(x)$	H(x)	0	0
X	$y + H^3(x)$	0	0	0
	x x x x x x x	$ \begin{array}{cccc} x & y \\ x & y \\ x & y \\ x & y + H^3(x) \\ x & y + H^3(x) \\ x & y + H^3(x) \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $H^n_d(y_i) \stackrel{\scriptscriptstyle ?}{=} H^n_d(x_i)$

Reversibility

Reversibility of distinguish point

- ▶ Bennett-Tompa technique to build a reversible circuit for *H*^{*n*};
- It is possible to achieve a + O(b log₂ n) ancillas and gate depth O(gn^{1+ϵ}).

³Efficient distributed quantum computing Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W. and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark ₂

Reversibility

Reversibility of distinguish point

- ▶ Bennett-Tompa technique to build a reversible circuit for *H*^{*n*};
- It is possible to achieve a + O(b log₂ n) ancillas and gate depth O(gn^{1+ϵ}).

Reversibility of sorting on a mesh network

- Using the sorting strategy from "Efficient distributed quantum computing"³;
- We used Odd-even mergesort;
- It is possible to perform the sorting of t elements using O(t(b + (log t)²)) ancillas and O(t^{1/2}(log t)²) steps.

³Efficient distributed quantum computing Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W. and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark =

Fix images y_1, \ldots, y_t . We build a reversible circuit that performs the following operations:

• Input a vector (x_1, \ldots, x_t) .

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.
- Precompute the chain ends for y_1, \ldots, y_t .

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.
- Precompute the chain ends for y_1, \ldots, y_t .
- Sort the chain ends for x_1, \ldots, x_t and the chain ends for y_1, \ldots, y_t .

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.
- Precompute the chain ends for y_1, \ldots, y_t .
- Sort the chain ends for x₁,..., x_t and the chain ends for y₁,..., y_t.
- If there is a collision, say a collision between the chain end for x_i and the chain end for y_j: recompute the chain for x_i, checking each chain element to see whether it is a preimage for y_j.

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.
- Precompute the chain ends for y_1, \ldots, y_t .
- Sort the chain ends for x₁,..., x_t and the chain ends for y₁,..., y_t.
- ► If there is a collision, say a collision between the chain end for x_i and the chain end for y_j: recompute the chain for x_i, checking each chain element to see whether it is a preimage for y_j.
- Output 0 if a preimage was found, otherwise 1.

• Imagine a function $H: \{0,1\}^{40} \to \{0,1\}^{40};$

- Imagine a function $H : \{0, 1\}^{40} \to \{0, 1\}^{40}$;
- Consider $t = 2^8$ and $p = 2^8$, for this example.

- Imagine a function $H: \{0,1\}^{40} \rightarrow \{0,1\}^{40}$;
- Consider $t = 2^8$ and $p = 2^8$, for this example.
- The probability to find one preimage is roughly $t^{5/2}/N = (2^8)^{5/2}/(2^{40}) \approx 2^{-20}$;
- ► Each processor is going to use $\sqrt{N/pt^{3/2}}$ iterations; $\sqrt{2^{40}/2^8((2^8)^{3/2})} = \sqrt{2^{40}/2^{20}} = 2^{10}$ iterations.
- ▶ Overall, we get $(2^8)^{1/4}$ speedup from attacking 2^8 targets.

► Imagine AES-128;

- Imagine AES-128;
- Consider $t = 2^{30}$ and $p = 2^{30}$, for this example.

- Imagine AES-128;
- Consider $t = 2^{30}$ and $p = 2^{30}$, for this example.
- ► The probability to find is roughly $t^{5/2}/N$; For our example: $(2^{30})^{5/2}/2^{128} \approx 2^{-53}$.

- Imagine AES-128;
- Consider $t = 2^{30}$ and $p = 2^{30}$, for this example.
- ► The probability to find is roughly $t^{5/2}/N$; For our example: $(2^{30})^{5/2}/2^{128} \approx 2^{-53}$.
- Each processor is going to use $\sqrt{N/pt^{3/2}}$ iterations;

•
$$\sqrt{2^{128}/2^{30}(2^{30})^{3/2}} \approx \sqrt{2^{128}/2^{75}}$$

- Imagine AES-128;
- Consider $t = 2^{30}$ and $p = 2^{30}$, for this example.
- ► The probability to find is roughly $t^{5/2}/N$; For our example: $(2^{30})^{5/2}/2^{128} \approx 2^{-53}$.
- Each processor is going to use $\sqrt{N/pt^{3/2}}$ iterations;

•
$$\sqrt{2^{128}/2^{30}(2^{30})^{3/2}} \approx \sqrt{2^{128}/2^{75}}$$

• = $\sqrt{2^{53}} \approx 2^{26}$ iterations.

Conclusion & What's next?

Conclusion:

- Circuit uses $O(a + tb + t(\log t)^2)$ ancillas;
- Depth of $O(\sqrt{N/pt^{1/2}}(gt^{\epsilon/2} + (\log t)^2 \log b));$
- Approximately $\sqrt{N/pt^{3/2}}$ iterations.
- Created the circuit using quantum simulator for AES⁴ (libquantum instead of LiQUi |>);

⁴Applying Grover's algorithm to AES: quantum resource estimates Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and Steinwandt, Rainer

Conclusion & What's next?

Conclusion:

- Circuit uses $O(a + tb + t(\log t)^2)$ ancillas;
- Depth of $O(\sqrt{N/pt^{1/2}}(gt^{\epsilon/2} + (\log t)^2 \log b));$
- Approximately $\sqrt{N/pt^{3/2}}$ iterations.
- Created the circuit using quantum simulator for AES⁴ (libquantum instead of LiQUi |>);

What's next?

- Check for the real number of qubits/gates;
- Is it possible to improve?

⁴Applying Grover's algorithm to AES: quantum resource estimates Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and Steinwandt, Rainer

Questions

Thank you for your attention. Questions?

gustavo@cryptme.in