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Introduction

Preimage
Let H be a function that H : {0, 1}n → {0, 1}n. Preimage search is
given an output y , find a x such that H(x) = y .

It is desirable that given an output it should be computationally
infeasible to find any input that hashes to that output.
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Introduction

Preimage
Consider n = 128 and H = AES and 0 fixed as a plain text, i.e.,
H(x) = AESx(0), where x is a key.

The complexity to find one key is 2128 guesses.
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Introduction

Brute-force search for one preimage
Let H be a function that H : {0, 1}n → {0, 1}n.
The brute force is to check every input x given an output y . The
time complexity will be 2n guesses using classical computers.

If we apply Grover’s algorithm , using a quantum computer, the
complexity decreases to 2n/2 guesses.
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Introduction

Brute-force search for multi target preimages
Let H be a function that H : {0, 1}n → {0, 1}n.
However, we have a set of output y ’s, i.e., Y = {y1, y2, . . . , yt} and
we want to find one yi .

Now, we verify every input x with set of output Y . If we ignore
several costs, the complexity decreases to 2n/t guesses in a
classical computer.
If we apply Grover’s algorithm, using a quantum computer, the
complexity decreases to 2n/2/t1/2 guesses.
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Introduction

Costs for comparison
One big cost for preimage search in both cases is the comparisons.

I Classical computer:
I Single target: (2n)
I Multi target: t ∗ 2n/t

I Quantum computer:
I Single target: 2n/2
I Multi target: t ∗ 2n/2/t1/2
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Introduction

Parallel multi-target image attack for AES:

I van Oorschot–Wiener “parallel rho method”

I It uses a mesh of p small processors.
I Each processor runs 2128/pt fast steps, to find one of t

independent AES keys k1, . . . , kt , using a fixed plain text, e.g,
AES(0).

I However, it is pre-quantum.

NIST has claimed that AES-128 is secure enough.
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Introduction - Parallel rho method

Distinguish Point
Consider H : {0, 1}b → {0, 1}b
Take x an input of H, x ′ = H(x).
Thereafter, take x ′ and apply H again, x ′′ = H(x ′).
It is possible to do it n times (Hn), until a given condition is
satified. In our case, we want the first 0 < d < b/2 bits as 0.
Hn
d (x) means d bits of x, computed n times.
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Distinguish point in quantum setting

Distinguish point in quantum computers

I The operations in quantum computer must be reversible;

I It is not possible to design a “simple circuit” for distinguish
point;

I The sorting needs to be reversible too.
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Distinguish point in quantum setting

Using classical computers
Example to compute H3(x):

time 0: x y
time 1: x y H(x)
time 2: x y H2(x)
time 3: x y + H3(x)
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Distinguish point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Input:  x ∊ {0,1}b

H(x)

Output:  bit string with the DP of x

Check for 
d zeros

No

Yes

Copy of 
DP

Compute 
2d+1 times.
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Reversibility

Reversibility of distinguish point

I Bennett-Tompa technique to build a reversible circuit for Hn;
I It is possible to achieve a+O(b log2 n) ancillas and gate depth

O(gn1+ε).

Reversibility of sorting on a mesh network

I Using the sorting strategy from “Efficient distributed quantum
computing”3;

I We used Odd-even mergesort;
I It is possible to perform the sorting of t elements using

O(t(b + (log t)2)) ancillas and O(t1/2(log t)2) steps.

3Efficient distributed quantum computing
Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W.
and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark
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Finding t-images

Fix images y1, . . . , yt . We build a reversible circuit that performs
the following operations:

I Input a vector (x1, . . . , xt).

I Compute, in parallel, the chain ends for x1, . . . , xt : i.e.,
Hn
d (x1), . . . ,H

n
d (xt).

I Precompute the chain ends for y1, . . . , yt .
I Sort the chain ends for x1, . . . , xt and the chain ends for

y1, . . . , yt .
I If there is a collision, say a collision between the chain end for

xi and the chain end for yj : recompute the chain for xi ,
checking each chain element to see whether it is a preimage
for yj .

I Output 0 if a preimage was found, otherwise 1.

18 / 22
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Example

I Imagine a function H : {0, 1}40 → {0, 1}40;

I Consider t = 28 and p = 28, for this example.
I The probability to find one preimage is roughly

t5/2/N = (28)5/2/(240) ≈ 2−20;
I Each processor is going to use

√
N/pt3/2 iterations;√

240/28((28)3/2) =
√

240/220 = 210 iterations.
I Overall, we get (28)1/4 speedup from attacking 28 targets.
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Example

I Imagine AES−128;

I Consider t = 230 and p = 230, for this example.
I The probability to find is roughly t5/2/N; For our example:

(230)5/2/2128 ≈ 2−53.
I Each processor is going to use

√
N/pt3/2 iterations;

I
√

2128/230(230)3/2 ≈
√

2128/275

I =
√
253 ≈ 226 iterations.
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Conclusion & What’s next?

Conclusion:
I Circuit uses O(a+ tb + t(log t)2) ancillas;
I Depth of O(

√
N/pt1/2(gtε/2 + (log t)2 log b));

I Approximately
√
N/pt3/2 iterations.

I Created the circuit using quantum simulator for AES4

(libquantum instead of LiQUi |〉);

What’s next?
I Check for the real number of qubits/gates;
I Is it possible to improve?

4Applying Grover’s algorithm to AES: quantum resource estimates
Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and
Steinwandt, Rainer
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I Created the circuit using quantum simulator for AES4

(libquantum instead of LiQUi |〉);
What’s next?

I Check for the real number of qubits/gates;
I Is it possible to improve?
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Questions

Thank you for your attention.
Questions?

gustavo@cryptme.in
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