
Preimage search using low communication cost
parallel Grover algorithm

Gustavo Banegas1 and Daniel J. Bernstein1,2

Crypto Working Group
September 8, 2017

1Department of Mathematics and Computer Science
Technische Universiteit Eindhoven
gustavo@cryptme.in

2Department of Computer Science
University of Illinois at Chicago
djb@cr.yp.to 1 / 22

Introduction

Reversibility

Finding t-images

Example

Conclusion

2 / 22

Introduction

Preimage
Let H be a function that H : {0, 1}n → {0, 1}n. Preimage search is
given an output y , find a x such that H(x) = y .

It is desirable that given an output it should be computationally
infeasible to find any input that hashes to that output.

3 / 22

Introduction

Preimage
Let H be a function that H : {0, 1}n → {0, 1}n. Preimage search is
given an output y , find a x such that H(x) = y .
It is desirable that given an output it should be computationally
infeasible to find any input that hashes to that output.

3 / 22

Introduction

Preimage
Consider n = 128 and H = AES and 0 fixed as a plain text, i.e.,
H(x) = AESx(0), where x is a key.

The complexity to find one key is 2128 guesses.

4 / 22

Introduction

Preimage
Consider n = 128 and H = AES and 0 fixed as a plain text, i.e.,
H(x) = AESx(0), where x is a key.
The complexity to find one key is 2128 guesses.

4 / 22

Introduction

Brute-force search for one preimage
Let H be a function that H : {0, 1}n → {0, 1}n.
The brute force is to check every input x given an output y . The
time complexity will be 2n guesses using classical computers.

If we apply Grover’s algorithm , using a quantum computer, the
complexity decreases to 2n/2 guesses.

5 / 22

Introduction

Brute-force search for one preimage
Let H be a function that H : {0, 1}n → {0, 1}n.
The brute force is to check every input x given an output y . The
time complexity will be 2n guesses using classical computers.
If we apply Grover’s algorithm , using a quantum computer, the
complexity decreases to 2n/2 guesses.

5 / 22

Introduction

Brute-force search for multi target preimages
Let H be a function that H : {0, 1}n → {0, 1}n.
However, we have a set of output y ’s, i.e., Y = {y1, y2, . . . , yt} and
we want to find one yi .

Now, we verify every input x with set of output Y . If we ignore
several costs, the complexity decreases to 2n/t guesses in a
classical computer.
If we apply Grover’s algorithm, using a quantum computer, the
complexity decreases to 2n/2/t1/2 guesses.

6 / 22

Introduction

Brute-force search for multi target preimages
Let H be a function that H : {0, 1}n → {0, 1}n.
However, we have a set of output y ’s, i.e., Y = {y1, y2, . . . , yt} and
we want to find one yi .
Now, we verify every input x with set of output Y . If we ignore
several costs, the complexity decreases to 2n/t guesses in a
classical computer.
If we apply Grover’s algorithm, using a quantum computer, the
complexity decreases to 2n/2/t1/2 guesses.

6 / 22

Introduction

Costs for comparison
One big cost for preimage search in both cases is the comparisons.

I Classical computer:
I Single target: (2n)
I Multi target: t ∗ 2n/t

I Quantum computer:
I Single target: 2n/2
I Multi target: t ∗ 2n/2/t1/2

7 / 22

Introduction

Costs for comparison
One big cost for preimage search in both cases is the comparisons.

I Classical computer:
I Single target: (2n)
I Multi target: t ∗ 2n/t

I Quantum computer:
I Single target: 2n/2
I Multi target: t ∗ 2n/2/t1/2

7 / 22

Introduction

Costs for comparison
One big cost for preimage search in both cases is the comparisons.

I Classical computer:
I Single target: (2n)
I Multi target: t ∗ 2n/t

I Quantum computer:
I Single target: 2n/2
I Multi target: t ∗ 2n/2/t1/2

7 / 22

Introduction

Parallel multi-target image attack for AES:

I van Oorschot–Wiener “parallel rho method”

I It uses a mesh of p small processors.
I Each processor runs 2128/pt fast steps, to find one of t

independent AES keys k1, . . . , kt , using a fixed plain text, e.g,
AES(0).

I However, it is pre-quantum.

NIST has claimed that AES-128 is secure enough.

8 / 22

Introduction

Parallel multi-target image attack for AES:

I van Oorschot–Wiener “parallel rho method”
I It uses a mesh of p small processors.

I Each processor runs 2128/pt fast steps, to find one of t
independent AES keys k1, . . . , kt , using a fixed plain text, e.g,
AES(0).

I However, it is pre-quantum.

NIST has claimed that AES-128 is secure enough.

8 / 22

Introduction

Parallel multi-target image attack for AES:

I van Oorschot–Wiener “parallel rho method”
I It uses a mesh of p small processors.
I Each processor runs 2128/pt fast steps, to find one of t

independent AES keys k1, . . . , kt , using a fixed plain text, e.g,
AES(0).

I However, it is pre-quantum.

NIST has claimed that AES-128 is secure enough.

8 / 22

Introduction

Parallel multi-target image attack for AES:

I van Oorschot–Wiener “parallel rho method”
I It uses a mesh of p small processors.
I Each processor runs 2128/pt fast steps, to find one of t

independent AES keys k1, . . . , kt , using a fixed plain text, e.g,
AES(0).

I However, it is pre-quantum.

NIST has claimed that AES-128 is secure enough.

8 / 22

Introduction

Parallel multi-target image attack for AES:

I van Oorschot–Wiener “parallel rho method”
I It uses a mesh of p small processors.
I Each processor runs 2128/pt fast steps, to find one of t

independent AES keys k1, . . . , kt , using a fixed plain text, e.g,
AES(0).

I However, it is pre-quantum.

NIST has claimed that AES-128 is secure enough.

8 / 22

Introduction - Parallel rho method

Distinguish Point
Consider H : {0, 1}b → {0, 1}b
Take x an input of H, x ′ = H(x).
Thereafter, take x ′ and apply H again, x ′′ = H(x ′).
It is possible to do it n times (Hn), until a given condition is
satified. In our case, we want the first 0 < d < b/2 bits as 0.
Hn
d (x) means d bits of x, computed n times.

9 / 22

Introduction - Parallel rho method

Distinguish Point

x1

x1’

x1’
’

x1’
’’

x1’’’’

x1’’’’
’

Distinguish
point

x2

x2’

x2’
’

x2’
’’

x2’’’’

x2’’’’
’

Distinguish
point

xj

xj’

xj’’

xj’’’

xj’’’’

xj’’’’’

Distinguish
point

xi

xi’

xi’’

xi’’
’

10 / 22

Overview
Oracle
calls

p small
processors,

free
communication

p small
processors,
realistic

communication
Single-target
preimage

N N/p N/p pre-
quantum

√
N

√
N/p

√
N/p post-

quantum

Multi-target
preimage

N/t N/pt N/pt

√
N/t ? ?

Collision
√
N

√
N/p

√
N/p

3
√
N

√
N/p

√
N/p

11 / 22

Overview
Oracle
calls

p small
processors,

free
communication

p small
processors,
realistic

communication
Single-target
preimage

N N/p N/p pre-
quantum

√
N

√
N/p

√
N/p post-

quantum

Multi-target
preimage

N/t N/pt N/pt

√
N/t

√
N/pt

√
N/pt1/2

Collision
√
N

√
N/p

√
N/p

3
√
N

√
N/p

√
N/p

12 / 22

Distinguish point in quantum setting

Distinguish point in quantum computers

I The operations in quantum computer must be reversible;

I It is not possible to design a “simple circuit” for distinguish
point;

I The sorting needs to be reversible too.

13 / 22

Distinguish point in quantum setting

Distinguish point in quantum computers

I The operations in quantum computer must be reversible;
I It is not possible to design a “simple circuit” for distinguish

point;

I The sorting needs to be reversible too.

13 / 22

Distinguish point in quantum setting

Distinguish point in quantum computers

I The operations in quantum computer must be reversible;
I It is not possible to design a “simple circuit” for distinguish

point;
I The sorting needs to be reversible too.

13 / 22

Distinguish point in quantum setting

Using classical computers
Example to compute H3(x):

time 0: x y
time 1: x y H(x)
time 2: x y H2(x)
time 3: x y + H3(x)

14 / 22

Distinguish point in quantum setting

Using classical computers
Example to compute H3(x):

time 0: x y

time 1: x y H(x)
time 2: x y H2(x)
time 3: x y + H3(x)

14 / 22

Distinguish point in quantum setting

Using classical computers
Example to compute H3(x):

time 0: x y
time 1: x y H(x)

time 2: x y H2(x)
time 3: x y + H3(x)

14 / 22

Distinguish point in quantum setting

Using classical computers
Example to compute H3(x):

time 0: x y
time 1: x y H(x)
time 2: x y H2(x)

time 3: x y + H3(x)

14 / 22

Distinguish point in quantum setting

Using classical computers
Example to compute H3(x):

time 0: x y
time 1: x y H(x)
time 2: x y H2(x)
time 3: x y + H3(x)

14 / 22

Distinguish point in quantum setting

Using classical computers
Example to compute H3(x):

time 0: x y
time 1: x y H(x)
time 2: x y H2(x)
time 3: x y + H3(x)

14 / 22

Distinguish point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Input: x ∊ {0,1}b

H(x)

Output: bit string with the DP of x

Check for
d zeros

No

Yes

Copy of
DP

Compute
2d+1 times.

15 / 22

Distinguish point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x y 0 0 0

time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Input: x ∊ {0,1}b

H(x)

Output: bit string with the DP of x

Check for
d zeros

No

Yes

Copy of
DP

Compute
2d+1 times.

15 / 22

Distinguish point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x y 0 0 0
time 1: x y H(x) 0 0

time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Input: x ∊ {0,1}b

H(x)

Output: bit string with the DP of x

Check for
d zeros

No

Yes

Copy of
DP

Compute
2d+1 times.

15 / 22

Distinguish point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0

time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Input: x ∊ {0,1}b

H(x)

Output: bit string with the DP of x

Check for
d zeros

No

Yes

Copy of
DP

Compute
2d+1 times.

15 / 22

Distinguish point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0

time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Input: x ∊ {0,1}b

H(x)

Output: bit string with the DP of x

Check for
d zeros

No

Yes

Copy of
DP

Compute
2d+1 times.

15 / 22

Distinguish point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0

time 5: x y + H3(x) 0 0 0

Input: x ∊ {0,1}b

H(x)

Output: bit string with the DP of x

Check for
d zeros

No

Yes

Copy of
DP

Compute
2d+1 times.

15 / 22

Distinguish point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Input: x ∊ {0,1}b

H(x)

Output: bit string with the DP of x

Check for
d zeros

No

Yes

Copy of
DP

Compute
2d+1 times.

15 / 22

Distinguish point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Input: x ∊ {0,1}b

H(x)

Output: bit string with the DP of x

Check for
d zeros

No

Yes

Copy of
DP

Compute
2d+1 times.

15 / 22

xt ... x1

Hd(x1) .
.
.

Hn(x1)

.

.

.
Hn(xt)d d

...

...

Hd(xt)

yt ... y1

Hd(y1).
.
.

Hn(y1)

.

.

.
Hn(yt)d d

...

...

Hd(yt)

Hn(yi)d Hn(xj)d≟

16 / 22

xt ... x1

Hd(x1) .
.
.

Hn(x1)

.

.

.
Hn(xt)d d

...

...

Hd(xt)

yt ... y1

Hd(y1).
.
.

Hn(y1)

.

.

.
Hn(yt)d d

...

...

Hd(yt)

Hn(yi)d Hn(xj)d≟

16 / 22

xt ... x1

Hd(x1) .
.
.

Hn(x1)

.

.

.
Hn(xt)d d

...

...

Hd(xt)

yt ... y1

Hd(y1).
.
.

Hn(y1)

.

.

.
Hn(yt)d d

...

...

Hd(yt)

Hn(yi)d Hn(xj)d≟

16 / 22

Reversibility

Reversibility of distinguish point

I Bennett-Tompa technique to build a reversible circuit for Hn;
I It is possible to achieve a+O(b log2 n) ancillas and gate depth

O(gn1+ε).

Reversibility of sorting on a mesh network

I Using the sorting strategy from “Efficient distributed quantum
computing”3;

I We used Odd-even mergesort;
I It is possible to perform the sorting of t elements using

O(t(b + (log t)2)) ancillas and O(t1/2(log t)2) steps.

3Efficient distributed quantum computing
Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W.
and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark

17 / 22

Reversibility

Reversibility of distinguish point

I Bennett-Tompa technique to build a reversible circuit for Hn;
I It is possible to achieve a+O(b log2 n) ancillas and gate depth

O(gn1+ε).

Reversibility of sorting on a mesh network

I Using the sorting strategy from “Efficient distributed quantum
computing”3;

I We used Odd-even mergesort;
I It is possible to perform the sorting of t elements using

O(t(b + (log t)2)) ancillas and O(t1/2(log t)2) steps.

3Efficient distributed quantum computing
Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W.
and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark

17 / 22

Finding t-images

Fix images y1, . . . , yt . We build a reversible circuit that performs
the following operations:

I Input a vector (x1, . . . , xt).

I Compute, in parallel, the chain ends for x1, . . . , xt : i.e.,
Hn
d (x1), . . . ,H

n
d (xt).

I Precompute the chain ends for y1, . . . , yt .
I Sort the chain ends for x1, . . . , xt and the chain ends for

y1, . . . , yt .
I If there is a collision, say a collision between the chain end for

xi and the chain end for yj : recompute the chain for xi ,
checking each chain element to see whether it is a preimage
for yj .

I Output 0 if a preimage was found, otherwise 1.

18 / 22

Finding t-images

Fix images y1, . . . , yt . We build a reversible circuit that performs
the following operations:

I Input a vector (x1, . . . , xt).
I Compute, in parallel, the chain ends for x1, . . . , xt : i.e.,

Hn
d (x1), . . . ,H

n
d (xt).

I Precompute the chain ends for y1, . . . , yt .
I Sort the chain ends for x1, . . . , xt and the chain ends for

y1, . . . , yt .
I If there is a collision, say a collision between the chain end for

xi and the chain end for yj : recompute the chain for xi ,
checking each chain element to see whether it is a preimage
for yj .

I Output 0 if a preimage was found, otherwise 1.

18 / 22

Finding t-images

Fix images y1, . . . , yt . We build a reversible circuit that performs
the following operations:

I Input a vector (x1, . . . , xt).
I Compute, in parallel, the chain ends for x1, . . . , xt : i.e.,

Hn
d (x1), . . . ,H

n
d (xt).

I Precompute the chain ends for y1, . . . , yt .

I Sort the chain ends for x1, . . . , xt and the chain ends for
y1, . . . , yt .

I If there is a collision, say a collision between the chain end for
xi and the chain end for yj : recompute the chain for xi ,
checking each chain element to see whether it is a preimage
for yj .

I Output 0 if a preimage was found, otherwise 1.

18 / 22

Finding t-images

Fix images y1, . . . , yt . We build a reversible circuit that performs
the following operations:

I Input a vector (x1, . . . , xt).
I Compute, in parallel, the chain ends for x1, . . . , xt : i.e.,

Hn
d (x1), . . . ,H

n
d (xt).

I Precompute the chain ends for y1, . . . , yt .
I Sort the chain ends for x1, . . . , xt and the chain ends for

y1, . . . , yt .

I If there is a collision, say a collision between the chain end for
xi and the chain end for yj : recompute the chain for xi ,
checking each chain element to see whether it is a preimage
for yj .

I Output 0 if a preimage was found, otherwise 1.

18 / 22

Finding t-images

Fix images y1, . . . , yt . We build a reversible circuit that performs
the following operations:

I Input a vector (x1, . . . , xt).
I Compute, in parallel, the chain ends for x1, . . . , xt : i.e.,

Hn
d (x1), . . . ,H

n
d (xt).

I Precompute the chain ends for y1, . . . , yt .
I Sort the chain ends for x1, . . . , xt and the chain ends for

y1, . . . , yt .
I If there is a collision, say a collision between the chain end for

xi and the chain end for yj : recompute the chain for xi ,
checking each chain element to see whether it is a preimage
for yj .

I Output 0 if a preimage was found, otherwise 1.

18 / 22

Finding t-images

Fix images y1, . . . , yt . We build a reversible circuit that performs
the following operations:

I Input a vector (x1, . . . , xt).
I Compute, in parallel, the chain ends for x1, . . . , xt : i.e.,

Hn
d (x1), . . . ,H

n
d (xt).

I Precompute the chain ends for y1, . . . , yt .
I Sort the chain ends for x1, . . . , xt and the chain ends for

y1, . . . , yt .
I If there is a collision, say a collision between the chain end for

xi and the chain end for yj : recompute the chain for xi ,
checking each chain element to see whether it is a preimage
for yj .

I Output 0 if a preimage was found, otherwise 1.

18 / 22

Example

I Imagine a function H : {0, 1}40 → {0, 1}40;

I Consider t = 28 and p = 28, for this example.
I The probability to find one preimage is roughly

t5/2/N = (28)5/2/(240) ≈ 2−20;
I Each processor is going to use

√
N/pt3/2 iterations;√

240/28((28)3/2) =
√

240/220 = 210 iterations.
I Overall, we get (28)1/4 speedup from attacking 28 targets.

19 / 22

Example

I Imagine a function H : {0, 1}40 → {0, 1}40;
I Consider t = 28 and p = 28, for this example.

I The probability to find one preimage is roughly
t5/2/N = (28)5/2/(240) ≈ 2−20;

I Each processor is going to use
√
N/pt3/2 iterations;√

240/28((28)3/2) =
√

240/220 = 210 iterations.
I Overall, we get (28)1/4 speedup from attacking 28 targets.

19 / 22

Example

I Imagine a function H : {0, 1}40 → {0, 1}40;
I Consider t = 28 and p = 28, for this example.
I The probability to find one preimage is roughly

t5/2/N = (28)5/2/(240) ≈ 2−20;
I Each processor is going to use

√
N/pt3/2 iterations;√

240/28((28)3/2) =
√

240/220 = 210 iterations.
I Overall, we get (28)1/4 speedup from attacking 28 targets.

19 / 22

Example

I Imagine AES−128;

I Consider t = 230 and p = 230, for this example.
I The probability to find is roughly t5/2/N; For our example:

(230)5/2/2128 ≈ 2−53.
I Each processor is going to use

√
N/pt3/2 iterations;

I
√

2128/230(230)3/2 ≈
√

2128/275

I =
√
253 ≈ 226 iterations.

20 / 22

Example

I Imagine AES−128;
I Consider t = 230 and p = 230, for this example.

I The probability to find is roughly t5/2/N; For our example:
(230)5/2/2128 ≈ 2−53.

I Each processor is going to use
√
N/pt3/2 iterations;

I
√

2128/230(230)3/2 ≈
√

2128/275

I =
√
253 ≈ 226 iterations.

20 / 22

Example

I Imagine AES−128;
I Consider t = 230 and p = 230, for this example.
I The probability to find is roughly t5/2/N; For our example:

(230)5/2/2128 ≈ 2−53.

I Each processor is going to use
√
N/pt3/2 iterations;

I
√

2128/230(230)3/2 ≈
√

2128/275

I =
√
253 ≈ 226 iterations.

20 / 22

Example

I Imagine AES−128;
I Consider t = 230 and p = 230, for this example.
I The probability to find is roughly t5/2/N; For our example:

(230)5/2/2128 ≈ 2−53.
I Each processor is going to use

√
N/pt3/2 iterations;

I
√

2128/230(230)3/2 ≈
√

2128/275

I =
√
253 ≈ 226 iterations.

20 / 22

Example

I Imagine AES−128;
I Consider t = 230 and p = 230, for this example.
I The probability to find is roughly t5/2/N; For our example:

(230)5/2/2128 ≈ 2−53.
I Each processor is going to use

√
N/pt3/2 iterations;

I
√

2128/230(230)3/2 ≈
√

2128/275

I =
√
253 ≈ 226 iterations.

20 / 22

Conclusion & What’s next?

Conclusion:
I Circuit uses O(a+ tb + t(log t)2) ancillas;
I Depth of O(

√
N/pt1/2(gtε/2 + (log t)2 log b));

I Approximately
√
N/pt3/2 iterations.

I Created the circuit using quantum simulator for AES4

(libquantum instead of LiQUi |〉);

What’s next?
I Check for the real number of qubits/gates;
I Is it possible to improve?

4Applying Grover’s algorithm to AES: quantum resource estimates
Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and
Steinwandt, Rainer

21 / 22

Conclusion & What’s next?

Conclusion:
I Circuit uses O(a+ tb + t(log t)2) ancillas;
I Depth of O(

√
N/pt1/2(gtε/2 + (log t)2 log b));

I Approximately
√
N/pt3/2 iterations.

I Created the circuit using quantum simulator for AES4

(libquantum instead of LiQUi |〉);
What’s next?

I Check for the real number of qubits/gates;
I Is it possible to improve?

4Applying Grover’s algorithm to AES: quantum resource estimates
Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and
Steinwandt, Rainer

21 / 22

Questions

Thank you for your attention.
Questions?

gustavo@cryptme.in

22 / 22

	Introduction
	Reversibility
	Finding t-images
	Example
	Conclusion

