Introduction to Quantum Walk

Gustavo Banegas gustavo@cryptme.in

Department of Mathematics and Computer Science Technische Universiteit Eindhoven

September 15, 2016

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Content

Introduction

Walking on the line

Quantum query algorithms

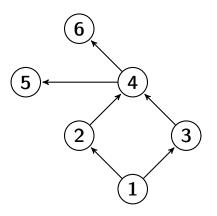
Element distinctness

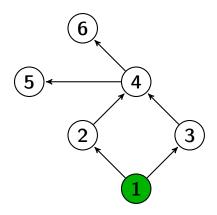
What is a quantum walk?

- A random walk is the simulation of random movement around a graph
- A quantum walk is similar to random walk algorithm
- Random walks are a useful model for developing classical algorithms; quantum walks provide a new way of developing quantum algorithms

Classical Random walks used in best known classical algorithms:

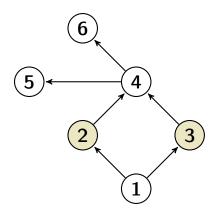
- k-sat
- graph isomorphism
- approximating the permanent of a matrix



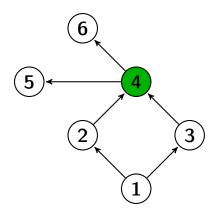


Step	Probability at vertex										
	1	1 2 3 4 5 6									
0	1										
1											
2											
3											

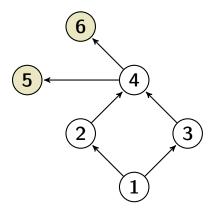
TU/e Technische Universiteit Eindhoven University of Technology



Step	Probability at vertex										
	1	1 2 3 4 5 6									
0	1										
1		$\frac{1}{2}$	$\frac{1}{2}$								
2											
3											



Step	Probability at vertex											
	1	1 2 3 4 5 6										
0	1											
1		$\frac{1}{2}$	$\frac{1}{2}$									
2				1								
3												



Step	Probability at vertex										
	1	1 2 3 4 5 6									
0	1										
1		$\frac{1}{2}$	$\frac{1}{2}$								
2		_		1							
3					$\frac{1}{2}$	$\frac{1}{2}$					

After 3 steps we are in vertex 5 or 6 with equal probability.

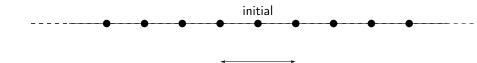
Definition of random walk

- Express a classical random walk as a matrix A of transition probabilities
- Express a position as a column vector v
- Performing a step of the walk corresponds to a left multiplication v by A
- Performing n steps of the walk corresponds to a left multiplication v by Aⁿ

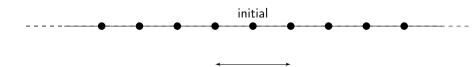
Definition of quantum walk

- Probabilities combine differently (sum of the amplitudes squared must be 1)
- Transition matrix must be unitary
- This will not in general be the case, but maybe it is needed to modify the structure of the graph (Adding a coin space)

Walking on the line



Walking on the line



t n	-5	-4	-3	-2	-1	0	1	2	3	4	5
0						1					
1					1/2		1/2				
2				1/4		1/2		1/4			
3			1/8		3/8		3/8		1/8		
4		1/16		1/4		3/8		1/4		1/16	
5	1/32		5/32		5/16		5/16		5/32		1/32

TU/e Technische Universiteit Eindhoven University of Technology

(ロ)、

- Walker's position n should be a vector in Hilbert space H_P; Computational basis is {|n⟩ : n ∈ Z}
- The movement, called evolution, of the walk depend on a quantum "coin":
 - \blacktriangleright "heads" the next step will be |n+1
 angle
 - "tails" the next step will be |n-1
 angle
- ▶ The Hilbert space of the system should be $\mathcal{H} = \mathcal{H}_C \otimes \mathcal{H}_P$; where \mathcal{H}_C has computational basis $\{|0\rangle, |1\rangle\}$.

TU/e Technische Universiteit Eindhoven University of Technology

- ► In fact, the "coin" is any unitary matrix C with dimension 2, which acts on the vectors in Hilbert space H_C.
- ► The shift from |n⟩ to |n + 1⟩ or |n 1⟩ must be described by a unitary operator called shift operator S. Also, it should operate as:

•
$$S \ket{0} \ket{n} = \ket{0} \ket{n+1}$$

•
$$S \ket{1} \ket{n} = \ket{1} \ket{n-1}$$

A step of quantum walk is SC.

If we know the action of S on the computational basis of \mathcal{H} , it is possible to have a complete description of this linear operator. In the case, we can deduce that:

$$S = \ket{0}ra{0} \otimes \sum_{n=-\infty}^{\infty} \ket{n+1}ra{n} + \ket{1}ra{1} \otimes \sum_{n=-\infty}^{\infty} \ket{n-1}ra{n}$$

Let us take the initial stat at the origin $|n = 0\rangle$ and the coin state with $|0\rangle$. So, we have:

$$\psi(0)
angle = |0
angle |n = 0
angle$$

Applying the state of the coin, i.e $H \otimes I$, followed by application of shift operator *S*:

$$|0
angle\otimes|0
angle \xrightarrow{H\otimes l} rac{|0
angle+|1
angle}{\sqrt{2}}\otimes|0
angle \xrightarrow{s} rac{1}{\sqrt{2}}(|0
angle\otimes|1
angle+|1
angle\otimes|-1
angle)$$

The quantum walk consists in applying the unitary operator:

$$U=S(H\otimes I)$$

So, we have: $\ket{\psi(t)} = U^t \ket{\psi(0)}$

$$\ket{\psi(1)} = rac{1}{\sqrt{2}} (\ket{1} \ket{-1} + \ket{0} \ket{1})$$

Applying $\ket{\psi(2)} = U \ket{\psi(1)}$

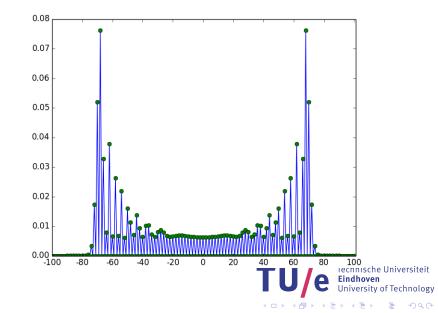
$$\ket{\psi(2)} = rac{1}{2} (-\ket{1}\ket{-2} + (\ket{0} + \ket{1})\ket{0} + \ket{0}\ket{2})$$

TU/e Technische Universiteit Eindhoven University of Technology

t n	-5	-4	-3	-2	-1	0	1	2	3	4	5
0						1					
1					1/2		1/2				
2				1/4		1/2		1/4			
3			1/8		1/8		5/8		1/8		
4		1/16		1/8		1/8		5/8		1/16	
5	1/32		5/32		1/8		1/8		17/32		1/32

- The superposition should not cancel terms before the calculation of the probability distribution
- The trick is to multiply the imaginary complex number i to the second initial contindition

$$\ket{\psi(0)} = rac{\ket{0} - i \ket{1}}{\sqrt{2}} \ket{n=0}$$



Quantum query algorithms

Considering a computation of a Boolean function $f(x_1, \ldots, x_N) : \{0, 1\}^N \to \{0, 1\}$. In the quantum query model, you evaluate the function accessing the oracle O by queries and the complexity is measured in the numbers of calls to O.

Quantum query algorithms

A quantum computation with T queries is just a sequence of unitary transformations:

$$U_0 \rightarrow O \rightarrow U_1 \rightarrow O \rightarrow \ldots \rightarrow U_{T-1} \rightarrow O \rightarrow U_T.$$

Definition:

Given numbers $x_1, \ldots, x_N \in [S]$, are all distinct? Are there some x_i, x_j such as $i \neq j$ and $x_i = x_j$? Does a set S of N elements contain any duplicate elements?

Solving classical:

The best way to solve is by sorting, which requires $\Omega(N)$.

Solving quantum:

It is possible to solve using $O(N^{2/3})$ queries. We are going to see how it works very briefly.

Example

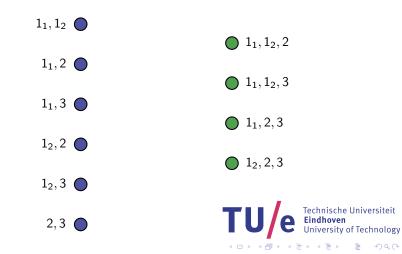
- We use a quantum walk on a graph where the vertices are subsets of S containing either M or M + 1 elements for some M < N</p>
- Two vertices are connected if they differ in exactly one element

Let define an graph that encodes the set $\{1_1, 1_2, 2, 3\}$ for M = 2.

Example

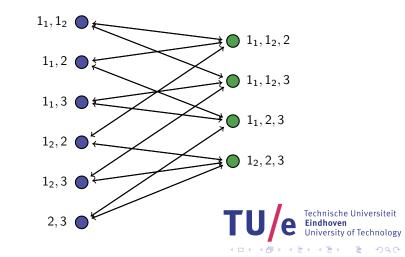
• We use a quantum walk on a graph where the vertices are subsets of S containing either M or M + 1 elements for some M < N

Our set is $\{1_1, 1_2, 2, 3\}$ and M = 2



Example

▶ Two vertices are connected if they differ in exactly one element Our set is $\{1_1, 1_2, 2, 3\}$ and M = 2

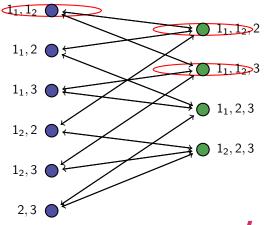


Basic walk algorithm:

- 1. Start with some subset $S' \subseteq S$ (where |S'| = M)
- 2. check whether S' contains any duplicates (needs O(M) queries)
- 3. if not, change to a different subset S'' that differs in exactly one element
- 4. check S'' for duplicates (needs 1 query)
- 5. repeat steps 3 and 4 until a duplicate is found

Because this is a quantum walk, we can start with a superposition of all $M-{\rm subsets}$

Example



TU/e Technische Universiteit Eindhoven University of Technology

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

Analysis of quantum walk:

- In total, we need (M + r) queries, where:
 - *M* is the number of elements in the initial subset
 - r is the number of steps of the quantum walk
- If we pick $M = N^{2/3}$, then a solution can be found with high probability in $r = N^{1/3}$ steps of the walk
- It is needed a significant amount of space (It is $O(N^{2/3} \text{ elements}))$

Other uses of Quantum Walk

Applications of quantum walks

- 1. Quantum network routing Kempe, 2002
- 2. Quantum walk search algorithm Shenvi, Kempe, Whaley, 2002
- 3. Element distinctness Ambainis, 2004
- 4. Applications of element distinctness Magniez, Santha, Szegedy, 2003 Buhrmann, Spalek, 2004
- Quantum algorithms for the subset-sum problem Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, Alexander Meurer, 2013

Open Problems

- Exponential speedup for natural problems
- Improving k-distinctness, triangle and k-clique algorithms
- Other applications for quantum walk search

Questions

Thank You!!

¿Questions? https://www.cryptme.in/slides

