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Post-Quantum Cryptography

NIST proposals
November 2017: NIST posts 82 submissions from 260 people.

Signatures KEM/Encryption Overall
Lattice-based 4 24 28
Code-based 5 19 24
MQ-based 7 6 13
Hash-based 4 4

Other 3 10 13

Total 23 59 82
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DAGS

DAGS: Key Encapsulation from Dyadic GS Codes

I It is a code-based KEM;
I It uses Generalized Srivastava codes;
I It has short keys

, much smaller than Classic McEliece;
I As the name suggest it uses dyadic operations.
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Introduction

What did we do?
I Improve code-based cryptographic schemes that use

Quasi-Dyadic (QD) operations;
I Analyze the multiplication of dyadic matrices using:

“Standard”, Karatsuba and Fast Walsh-Hadamard
Transformation;

I Apply LUP decomposition to dyadic case.
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Preliminaries & Notations

What are dyadic matrices?
Given a ring R and a vector h = (h0, h1, . . . hn−1) ∈ R with
n = 2r , r ∈ N, called the order.
A dyadic matrix is the symmetric matrix with components
∆ij = hi⊕j , where ⊕ stands for bitwise exclusive-or.
We use ∆(h) to denote dyadic matrix.
The product of two dyadic matrices is a dyadic matrix.

Quasi-dyadic matrix
A quasi-dyadic matrix is a block matrix whose blocks are dyadic.

In particular, we focus on the special case of quasi-dyadic matrices
with elements belonging to a field F of characteristic 2.
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Preliminaries & Notations

A dyadic permutation
A dyadic permutation is a dyadic matrix Πi ∈∆({0, 1}n) given by
Πi = ∆(πi ) where πi is the i-th unit vector.

Example
Suppose n = 4, and i = 1. So, we have π1 = (0, 1, 0, 0) and Π1 is
equal to:

Π1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


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Standard Multiplication

The element of a matrix C in position (i , j) is obtained as the
multiplication between the i-th row of A and the j-th column of B.

However, A and B are dyadic matrices and they are symmetric.
So, the product is equivalent to the inner product between i-th row
of A and the j-th of B .
The schoolbook matrix multiplication takes 23r multiplications.
Because ∆(a)∆(b) is dyadic we only need the top row.
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Standard Multiplication
input : r ∈ N, n = 2r and a, b ∈ Fn

output: c ∈ Fn such that ∆(c) = ∆(a)∆(b)
c ← (0, 0, . . . , 0);
c0 ← a0b0;
for i ← 1 to n − 1 do

c0 ← c0 + aibi ;
i (b) ← binary representation of i ;
for j ← 0 to n − 1 do

j (b) ← binary representation of j ;
π(b) ← i (b) ⊕ j (b);
π ← integer representation of π(b);
ci ← ci + aibπ;

end
end
return c ;

Complexity estimated in:

Cstd = r(22r − 2r ) + 22rCmul + (22r − 2r )Csum
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Dyadic Convolution

What is dyadic convolution?
The dyadic convolution of two vectors a, b ∈ F, denoted by a M b, is
the unique vector of F such that ∆(a M b) = ∆(a)∆(b).

Sylvester-Hadamard Matrices

H0 =
[
1
]
,

Hr =

[
Hr−1 Hr−1
Hr−1 −Hr−1

]
, r > 0.
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Dyadic Convolution

What do we achieve?
Computing c such that ∆(a)∆(b) = ∆(c) involves only three
multiplications of vectors by Sylvester-Hadamard matrices.

For this we propose two algorithms. First, we need to compute aHr

where a is a vector and Hr a Sylvester-Hadamard matrix. Second,
we perform the multiplication
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Dyadic Convolution

input : r ∈ N, n = 2r and a ∈ Fn

output: aHr

v ← 1;
for j ← 1 to n do

w ← v ;
v ← (v << 1);
/* left shift by one position */
for i ← 0 to n − 1 by v do

for l ← 0 to w do
s ← ai+l ;
q ← ai+l+w ;
ai+l ← s + q;
ai+l+w ← s − q;

end
end

end
return a;
Algorithm 1: The fast Walsh-Hadamard transform (FWHT)
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Dyadic Convolution

input : r ∈ N, n = 2r and a,b ∈ Fn

output: a Mb ∈ Fn such that ∆(a)∆(b) = ∆(a Mb)
c ← (0, 0, . . . , 0);
c̃ ← (0, 0, . . . , 0);
Compute ã← aHr via previous algorithm;
Compute b̃ ← bHr via previous algorithm;
for j ← 0 to n − 1 do

c̃ ← ãj b̃j ;
end
Compute c ← c̃Hr via previous algorithm;
c ← (c >> r);
/* right shift by r positions */
return c ;

Algorithm 2: Dyadic convolution via the FWHT
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Karatsuba

Consider a vector a and its halves defined as:

a0 =
[
a0, a1, · · · , a n

2−1

]
a1 =

[
a n

2
, a n

2+1, · · · , an−1

]
.

Some straightforward computations show that the following
relations hold:

c0 = a0b0 + a1b1
c1 = (a0 + a1) (b0 + b1) + c0

We can summarize the complexity of this method as:

CKar = 3r · Cmul + 4 · [3r − 2r ] · Csum
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Dyadic Matrices Inverse

Inverse of dyadic matrices can be defined as:
The inverse ∆(a)−1 is a dyadic matrix ∆(b). We can compute b
as follows:

1. Compute ~b with diag(~b) = [diag (aHr )]
−1;

2. Compute b′ = ~bHr ;
3. For each entry in b′ shift right r positions, the result is b.
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DAGS

Improving DAGS

Table: Cost of Multiplication between Dyadic Matrices

Standard Karatsuba Dyadic Convolution

F25
r = 4 4, 833 2, 194 3, 899
r = 5 21, 285 5, 909 12, 045

F26
r = 4 5, 833 2, 194 4, 899
r = 5 23, 231 6, 223 13, 568
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DAGS

Improving DAGS

Table: Comparison of Inversion Methods

Original DAGS LUP Inversion LUP + Karatsuba
DAGS 1 1, 318, 973, 209 321, 771 108, 117
DAGS 3 2, 211, 076, 311 557, 822 198, 199
DAGS 5 17, 925, 330, 712 654, 713 431, 890
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Questions

Thank you for your attention.
gustavo@cryptme.in
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